In the southeast United States, a field of peanuts, Arachis hypogaea L., is often closely associated with a field of cotton, Gossypium hirsutum L. The objective of this 4-yr on-farm study was to examine and compare the spatiotemporal patterns and dispersal of the southern green stink bug, Nezara viridula L., and the brown stink bug, Euschistus servus (Say), in six of these peanut-cotton farmscapes. GS(+) Version 9 was used to generate interpolated estimates of stink bug density by inverse distance weighting. Interpolated stink bug population raster maps were constructed using ArcMap Version 9.2. This technique was used to show any change in distribution of stink bugs in the farmscape over time. SADIE (spatial analysis by distance indices) methodology was used to examine spatial aggregation of individual stink bug species and spatial association of the two stink bug species in the individual crops. Altogether, the spatiotemporal analyses for the farmscapes showed that some N. viridula and E. servus nymphs and adults that develop in peanuts disperse into cotton. When these stink bugs disperse from peanuts into cotton, they aggregate in cotton at the interface, or common boundary, of the two crops while feeding on cotton bolls. Therefore, there is a pronounced edge effect observed in the distribution of stink bugs as they colonize the new crop, cotton. The driving force for the spatiotemporal distribution and dispersal of both stink bug species in peanut-cotton farmscapes seems to be availability of food in time and space mitigated by landscape structure. Thus, an understanding of farmscape ecology of stink bugs and their natural enemies is necessary to strategically place, in time and space, biologically based management strategies that control stink bug populations while conserving natural enemies and the environment and reducing off-farm inputs.
We evaluated the toxicity of three insecticides (lambda cyhalothrin, spinosad, and S-1812) to the natural enemies Bracon mellitor Say, Cardiochiles nigriceps Viereck, Coleomegilla maculata De Geer, Cotesia marginiventris (Cresson), Geocoris punctipes (Say), and Hippodamia convergens Guérin-Méneville, in topical, residual, and field assays. Lambda cyhalothrin exhibited the greatest toxicity to the natural enemies. In topical toxicity tests, lambda cyhalothrin adversely affected each natural enemy species studied. Residues of lambda cyhalothrin on cotton leaves were toxic to B. mellitor, C. nigriceps, C. maculata, and C. punctipes. Interestingly, residues of this insecticide were not very toxic to C. marginiventris and H. convergens. Geocoris punctipes and C. maculata numbers in the field generally were significantly lower for lambda cyhalothrin treatments than for the other four treatments, substantiating the previous tests. Although cotton aphids began to increase over all treatments around the middle of the test period, the number of cotton aphids in the lambda cyhalothrin plots was significantly higher than the number in any of the other treatments. As cotton aphids increased in lambda cyhalothrin field plots, the predator H. convergens also increased in number, indicating that lambda cyhalothrin did not adversely affect it in accordance with the residual tests. Spinosad exhibited marginal to excellent selectivity, but was highly toxic to each parasitoid species and G. punctipes in topical toxicity tests and to B. mellitor in residual tests. Spinosad generally did not affect the number of G. punctipes, H. convergens, and C. maculata in the field except for one day after the second application for G. punctipes. S-1812 exhibited good to excellent selectivity to the natural enemies. Some reduction of G. punctipes occurred for only a short period after the first and second application of this insecticide in the field. H. convergens and C. maculata were affected very little by S-1812.
Detecting infestations of stink bugs (Heteroptera: Pentatomidae) using pheromones remains problematic, particularly so in the United States for the exotic stink bug, Nezara viridula L., and our native stink bug, Acrosternum hilare (Say). Therefore, we conducted a 2-yr on-farm study to examine the attractiveness and possible cross-attraction of the reported pheromones for N. viridula and A. hilare and those previously discovered for Euschistus servus (Say) and Plautia stali Scott to N. viridula, A. hilare, and E. servus. The attractiveness of selected pentatomid pheromones to tachinid parasitoids of stink bugs was also examined. We showed for the first time under field conditions that N. viridula can be trapped with its reported pheromone, a 3:1 trans- to cis-(Z)-alpha-bisabolene epoxide blend. In fact, attraction of N. viridula increased with higher pheromone doses. Traps baited with a 5:95 trans- to cis-(Z)-alpha-bisabolene epoxide blend, the reported male-produced A. hilare attractant pheromone, failed to attract significantly more A. hilare than did unbaited control traps. Instead A. hilare was significantly cross-attracted to the P. stali pheromone [methyl (E,E,Z)-2,4,6-decatrienoate]. The E. servus pheromone [methyl (E,Z)-2,4-decadienoate], either alone or in combination with P. stali pheromone, was more attractive to E. servus than to N. viridula, P. stali, or A. hilare pheromones. In general, tachinid parasitoids were found responsive to the male-specific volatiles of their known hosts, including the attractiveness of Trichopoda pennipes (F.) to sesquiterpenoid blends characteristic of A. hilare and N. viridula. A tachinid parasitoid of E. servus, Cylindromyia sp., seemed to be attracted to E. servus pheromone. In conclusion, our results indicate that stink bug traps baited with lures containing N. viridula pheromone blend, P. stali pheromone, and E. servus pheromone have the greatest potential for detecting populations of N. viridula, A. hilare, and E. servus, respectively, in diversified agricultural landscapes.
Brown stink bug, Euschistus servus (Say) (Heteroptera: Pentatomidae), damage on developing corn, Zea mays L., ears was examined in 2005 and 2006 by using eight parameters related to its yield and kernel quality. Stink bug infestations were initiated when the corn plants were at tasseling (VT), mid-silking (R1), and blister (R2) stages by using zero, three, and six in 2005 or zero, one, two, and four bugs per ear in 2006, and maintained for 9 d. The percentage of discolored kernels was affected by stink bug number in both years, but not always affected by plant growth stage. The growth stage effect on the percentage of discolored kernels was significant in 2006, but not in 2005. The percentage of aborted kernels was affected by both stink bug number and plant growth stage in 2005 but not in 2006. Kernel weight was significantly reduced when three E. sercus adults were confined on a corn ear at stage VT or R1 for 9 d in 2005, whereas one or two adults per ear resulted in no kernel weight loss, but four E. servus adults did cause significant kernel weight loss at stage VT in 2006. Stink bug feeding injury at stage R2 did not affect kernel damage, ear weight or grain weight in either year. The infestation duration (9 or 18 d) was positively correlated to the percentage of discolored kernels but did not affect kernel or ear weight. Based on the regression equations between the kernel weight and stink bug number, the gain threshold or economic injury level should be 0.5 bugs per ear for 9 d at stage VT and less for stage R1. This information will be useful in developing management guidelines for stink bugs in field corn during ear formation and early grain filling stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.