<p>This report was aimed at an investigation of efficiency for Photochemical Advanced Oxidation Processes (UV photolysis, UV/H2O2, UV/TiO2, UV/H2O2/TiO2 and UV/H2O2/Fe2+ processes) to decolorize Malachite Green Oxalate (MGO) dye. Experimental runs were performed using laboratory scale photochemical reactor. About 98% decolorization was obtained with initial 100 ppm MGO dye in Photo-Fenton process under optimal conditions (60 ppm Fe2+ concentration, 12 mM of oxidant concentration, at pH 3.0 for 60 min). 97% decolorization was obtained using UV/H2O2/TiO2 process having [TiO2]o of 0.6 gm/L for similar reaction conditions. The percentage decolorization of MGO was in range of 94-95% for both UV/TiO2 and UV/H2O2 processes. Concentration of ferrous salt (60 ppm) was considered as an optimal value to carry out the UV/H2O2/Fe2+ process for MGO decolorization. Influence of oxidant (H2O2) and Fe2+ ions for oxidation of MGO was studied in Photo-Fenton process. Sulphate radical based AOPs was proved to be more effective in treating MGO dye with irradiation. Results indicate that decolorization efficiency by Photochemical AOPs for MGO dye in photochemical reactor were more efficient. Pseudo-first-order model of kinetics was noticed to be the best model fit to explain the decolorization of MGO dye solution.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.