Particulate flows have mainly been studied under the simplifying assumption of a one-way coupling regime where the disperse phase does not modify the carrier fluid. A more complete view of multiphase flows can be gained calling into play two-way coupling effects, i.e. by accounting for the inter-phase momentum exchange, which is certainly relevant at increasing mass loading. In this paper we present a new methodology rigorously designed to capture the inter-phase momentum exchange for particles smaller than the smallest hydrodynamical scale, e.g. the Kolmogorov scale in a turbulent flow. The momentum coupling mechanism exploits the unsteady Stokes flow around a small rigid sphere, where the transient disturbance produced by each particle is evaluated in a closed form. The particles are described as lumped point masses, which would lead to the appearance of singularities. A rigorous regularization procedure is conceived to extract the physically relevant interactions between the particles and the fluid which avoids any 'ad hoc' assumption. The approach is suited for high-efficiency implementation on massively parallel machines since the transient disturbance produced by the particles is strongly localized in space. We will show that hundreds of thousands of particles can be handled at an affordable computational cost, as demonstrated by a preliminary application to a particle-laden turbulent shear flow.
In this paper we discuss the dynamical features of intermittent fluctuations in homogeneous shear flow turbulence. In this flow the energy cascade is strongly modified by the production of turbulent kinetic energy related to the presence of vortical structures induced by the shear. By using direct numerical simulations, we show that the refined Kolmogorov similarity is broken and a new form of similarity is observed, in agreement to previous results obtained in turbulent boundary layers. As a consequence, the intermittency of velocity fluctuations increases with respect to homogeneous and isotropic turbulence. We find here that the statistical properties of the energy dissipation are practically unchanged with respect to homogeneous isotropic conditions, while the increased intermittency is entirely captured in terms of the new similarity law.
Turbulent shear flows, such as those occurring in the wall region of turbulent boundary layers, manifest a substantial increase of intermittency with respect to isotropic conditions. This suggests a close link between anisotropy and intermittency. However, a rigorous statistical description of anisotropic flows is, in most cases, hampered by the inhomogeneity of the field. This difficulty is absent for the homogeneous shear flow. For this flow the scale by scale budget is discussed here by using the appropriate form of the Karman-Howarth equation, to determine the range of scales where the shear is dominant. The issuing generalization of the four-fifths law is then used as the guideline to extend to shear dominated flows the Kolmogorov-Obhukhov theory of intermittency. The procedure leads naturally to the formulation of generalized structure functions and the description of intermittency thus obtained reduces to the K62 theory for vanishing shear. Also here the intermittency corrections to the scaling exponents are carried by the moments of the coarse grained energy dissipation field. Numerical experiments give indications that the dissipation field is statistically unaffected by the shear, thereby supporting the conjecture that the intermittency corrections are universal. This observation together with the present reformulation of the theory gives reason for the increased intermittency observed in the classical longitudinal velocity increments.
Recently, clustering of inertial particles in turbulence has been thoroughly analyzed for statistically homogeneous isotropic flows. Phenomenologically, spatial homogeneity of particles configurations is broken by the advection of a range of eddies determined by the Stokes relaxation time of the particles which results in a multi-scale distribution of local concentrations and voids. Much less is known concerning anisotropic flows. Here, by addressing direct numerical simulations (DNS) of a statistically steady particle-laden homogeneous shear flow, we provide evidence that the mean shear preferentially orients particle patterns. By imprinting anisotropy on large scales velocity fluctuations, the shear indirectly affects the geometry of the clusters. Quantitative evaluation is provided by a purposely designed tool, the angular distribution function of particle pairs (ADF), which allows to address the anisotropy content of particles aggregates on a scale by scale basis. The data provide evidence that, depending on the Stokes relaxation time of the particles, anisotropic clustering may occur even in the range of scales where the carrier phase velocity field is already recovering isotropy. The strength of the singularity in the anisotropic component of the ADF quantifies the level of fine scale anisotropy, which may even reach values of more than 30% direction-dependent variation in the probability to find two close-by particles at viscous scale separation.
The hydrodynamics of a flagellated microorganism is investigated when swimming close to a planar free-slip surface by means of numerical solutions of the Stokes equations obtained via a Boundary Element Method. Depending on the initial condition, the swimmer can either escape from the free-slip surface or collide with the boundary. Interestingly, the microorganism does not exhibit a stable orbit. Independently of escape or attraction to the interface, close to a free-slip surface, the swimmer follows a counter-clockwise trajectory, in agreement with experimental findings, [15]. The hydrodynamics is indeed modified by the free-surface. In fact, when the same swimmer moves close to a no-slip wall, a set of initial conditions exists which result in stable orbits. Moreover when moving close to a free-slip or a no-slip boundary the swimmer assumes a different orientation with respect to its trajectory. Taken together, these results contribute to shed light on the hydrodynamical behaviour of microorganisms close to liquid-air interfaces which are relevant for the formation of interfacial biofilms of aerobic bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.