Aims. The stochastic acceleration of subrelativistic electrons from a background plasma is studied in order to find a possible explanation of the hard X-ray emission detected from the Coma cluster. Methods. We calculate the necessary energy supply as a function of the plasma temperature and of the electron energy, and we show that, for the same value of the hard X-ray flux, the energy supply changes gradually from its high value for the case when emitting particle are non-thermal to lower values when the electrons are thermal. The kinetic equations we use include terms describing particle thermalization as well as momentum diffusion due to the Fermi II acceleration. Results. We show that the temporal evolution of the particle distribution function has, at its final stationary stage, a rather specific form. This distribution function cannot be described by simple exponential or power-law expressions. A broad transfer region is formed by Coulomb collisions at energies between the Maxwellian and power-law parts of the distribution functions. In this region the radiative lifetime of a single quasi-thermal electron differs greatly from the lifetime of the distribution function as a whole. For a plasma temperature of 8 keV, the particles emitting bremsstrahlung at 20−80 keV lie in this quasi-thermal regime. We show that the energy supply required by quasi-thermal electrons to produce the observed hard X-ray flux from Coma is one or two orders of magnitude smaller than the value derived from the assumption of a nonthermal origin of the emitting particles. This result may solve the problem of rapid cluster overheating by nonthermal electrons raised by Petrosian (2001): while Petrosian's estimates are correct for nonthermal particles, they are inapplicable in the quasi-thermal range. We finally analyze the change in Coma's Sunyaev-Zeldovich effect caused by the implied distortions of the Maxwellian spectrum of electrons, and we show that evidence for the acceleration of subrelativistic electrons can, in principle, be derived from detailed spectral measurements.
Even with the renaissance in gamma-ray burst (GRB) research fostered by the Swift satellite, few bursts have both contemporaneous observations at long wavelengths and exquisite observations at later times across the electromagnetic spectrum. We present here contemporaneous imaging with the KAIT robotic optical telescope, dense optical sampling with Lulin, supplemented with infrared data from PAIRITEL and radio to gamma-ray data from the literature. For the first time, we can test the constancy of microphysical parameters in the internal-external shock paradigm and carefully trace the flow of energy from the GRB to the surrounding medium. KAIT data taken P1 minute after the start of GRB 051111 and coinciding with the fading gamma-ray tail of the prompt emission indicate a smooth reinjection of energy into the shock. No color change is apparent in observations beginning $1.5 minutes after the GRB and lasting for the first hour after the burst. There are achromatic flux modulations about the best-fit model at late (t % 10 4 s) times, possibly due to variations in the external density. We find that the host galaxy extinction is well fit by a curve similar to that of the Small Magellanic Cloud. Low visual extinction, A V % 0:2 mag, combined with high column densities determined from the X-ray and optical spectroscopy (N H > 10 21 cm À2), indicate a low dust-to-metals ratio and a possible overabundance of the light metals. An apparent small ratio of total to selective extinction (R V % 2) argues against dust destruction by the GRB. Time constancy of both the IR/optical/UV spectral energy distribution and the soft X-ray absorption suggests that the absorbing material is not local to the GRB.
We investigate theoretical models for the radio halo and hard X-ray (HXR) excess in the Coma galaxy cluster. Time-independent and time-dependent reacceleration models for relativistic electrons have been carried out to study the formation of the radio halo and HXR excess. In these models, the relativistic electrons are injected by merger shocks and re-accelerated by ensuing violent turbulence. The effects of different Mach numbers of the merger shocks on the radio and HXR excess emission are also investigated. We adopt 6 µG as the central magnetic field and reproduce the observed radio spectra via the synchrotron emission. We also obtain a central "plateau" in the radio spectral-index distribution, which have been observed in radio emission distribution. Our models can also produce the observed HXR excess emission via the inverse Compton scattering of the cosmic microwave background photons. We find that only the merger shocks with the Mach numbers around 1.6-2 can produce results in agreement with both the radio and HXR emission in the Coma cluster.
Multi-wavelength B, V , R, I observations of the optical afterglow of GRB 050319 were performed by the 1.05-m telescope at Kiso Observatory and the 1.0-m telescope at Lulin Observatory from 1.31 hours to 9.92 hours after the burst. Our R band lightcurves, combined with other published data, can be described by the smooth broken power-law function, with α 1 = −0.84 ±0.02 to α 2 = −0.48±0.03, 0.04 days after the GRB. The optical lightcurves are characterized by shallow decays-as was also observed in the X-rays-which may have a similar origin, related to energy injection. However, our observations indicate that there is still a puzzle concerning the chromatic breaks in the R band lightcurve (at 0.04 days) and the X-ray lightcurve (at 0.004 days) that remains to be solved.
The 1-m telescope at Lulin Observatory and the 0.76-m Katzman Automatic Imaging Telescope at Lick Observatory were used to observe the optical afterglow of the short-duration (1.2-1.5 s) gamma-ray burst (GRB) 040924. This object has a soft high-energy spectrum, thus making it an exceptional case, perhaps actually belonging to the short-duration tail of the long-duration GRBs. Our data, combined with other reported measurements, show that the early R-band light curve can be described by two power laws with index α = −0.7 (at t = 16-50 min) and α = −1.06 (at later times). The rather small difference in the spectral indices can be more easily explained by an afterglow model invoking a cooling break rather than a jet break.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.