Thin films of ZnSe have been deposited onto glass substrates at 373 K by thermal evaporation technique. The X-ray diffractogram confirmed that ZnSe has cubic type crystal structure. The lattice parameters of thin films are almost matching with the JCPDS 5 - 552 data for Zinc Selenide. The transmittance and reflectance have been measured at normal and near normal incidence, respectively, in the spectral range 200 - 2500 nm. The dependence of absorption coefficient, α in the photon energy have been determined. Analysis of the result showed that films of different thicknesses, direct transition occurs with band gap energies ranges from 2.2 to 2.6 eV. Refractive indices and extinction coefficients have been evaluated in the above spectral range
Thin films of lead telluride (PbTe) of thicknesses ranging from 1000 Å to 2500 Å have been prepared by co-evaporation (three temperature) technique, onto precleaned amorphous glass substrates at various temperatures. The deposited samples were annealed and annealed samples were used for characterization. Resistivity of these samples was measured by four-probe technique as a function of thickness and temperature. Activation energy for charge transport have been evaluated and found in the range of 0.09 to 0.106 eV. Thermoelectric power has been measured and found to be positive indicating that the samples are p-type semiconducting material. Mobility variation with temperature has been estimated (evaluated) and correlated with scattering mechanism in the entire range of temperature studied. The X-ray diffraction analysis confirmed that films are polycrystalline having cubic structure cell and lattice parameters are reported.
A procedure to make optical quality thin films of Zn x Cd (1-x) Te by use of thermal evaporation of the ternary compound has been investigated. Structural and optical properties of Zn x Cd (1-x) Te solid solution with x = 0.1 to 0.5 were synthesized, from the resulting ZnTe and CdTe composition used in preparation of thin films. Structural investigation indicates they have polycrystalline structure. Composition was confirmed from EDAX while SEM picture shows homogeneity in films. Plots of (αhν) 2 versus (hν) yield straight line indicating direct transition occurs with optical band gap energies in the range 1.7 -2.3 eV. It is also found with increase Zn content the band gap of the films increases. Refractive indices and extinction coefficients have been evaluated in the spectral range (200 -2500 nm).
Nanocrystalline thin films of cadmium sulphide were prepared by chemical bath deposition technique onto glass substrate at 60 °C. The deposition parameters were optimized to obtain good quality of nanocrystalline thin films such as, time, precursor concentration, temperature of deposition and pH of the solution. The studies on crystal structure, composition, surface morphology, electrical conductivity and photoconductivity of the films were carried out by using different analytical technique. Characterization includes X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Energy dispersive X-ray analysis (EDAX), Electrical and photoconductivity. The response and recovery time of the thin film were measured and presented.
Nanocrystalline CdS thin films were successfully prepared using simple chemical bath deposition technique. Cadmium sulphate, thiourea and deionised water were used as starting precursor solution. The prepared thin films were characterized using X-ray diffractogram (XRD), Scanning electron microscope (SEM), elemental composition using energy dispersive spectrophotometer (EDAX) and optical band gap (UV-Spectroscopy).X-ray diffractogram reveals that present of cubic and hexagonal phase. The thickness, crystallite size and grain size were observed to be increase with increase operating temperature of bath while optical band gap energy slightly decreases. Effect of deposition temperature on physical, structural, microstructural, electrical and optical properties of these films was studied and presented in the present investigation. Prepared thin films shows good response towards photoconducting in presence and absent of light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.