Isomeric low-lying states were identified and investigated in the 75 Cu nucleus. Two states at 61.8(5)-and 128.3(7)-keV excitation energies with half-lives of 370(40)-and 170(15)-ns were assigned as 75m1 Cu and 75m2 Cu, respectively. The measured half-lives combined with the recent spin assignment of the ground state allow one to deduce tentatively spin and parity of the two isomers and the dominant multipolarities of the isomeric transitions with respect to the systematics of the Cu isotopes. Shell-model calculations using an up-to-date effective interaction reproduce the evolution of the 1/2 − , 3/2 − , and 5/2 − states for the neutron-rich odd-mass Cu isotopes when filling the νg 9/2 . The results indicate a significant change in the nuclear structure in this region, where a single-particle 5/2 − state coexists with more and more collective 3/2 − and 1/2 − levels at low excitation energies.
This is an accepted version of a paper published in Nature. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.Citation for the published paper: Hinke, C., Boehmer, M., Boutachkov, P., Faestermann, T., Geissel, H. et al. (2012) "Superallowed Gamow-Teller decay of the doubly magic nucleus 100 Sn" Nature, 486 (7403): [341][342][343][344][345] Access to the published version may require subscription.
Abstract-Recoil decay tagging (RDT) is a very powerful method for the spectroscopy of exotic nuclei. RDT is a delayed coincidence technique between detectors usually at the target position and at the focal plane of a spectrometer. Such measurements are often limited by dead time. This paper describes a novel triggerless data acquisition method, which is being developed for the gamma recoil electron alpha tagging (GREAT) spectrometer, that overcomes this limitation by virtually eliminating dead time.Our solution is a total data readout (TDR) method where all channels run independently and are associated in software to reconstruct events. The TDR method allows all the data from both target position and focal plane to be collected with practically no dead-time losses. Each data word is associated with a timestamp generated from a global 100-MHz clock. Events are then reconstructed in real time in the event builder using temporal and spatial associations defined by the physics of the experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.