The causes and timing of piglet mortality were studied in different farrowing systems. In the first experiment 198 litters were recorded in three systems, two of which allowed the sows to move freely, and the third restricted them in conventional crates. More piglets were weaned from the conventional crates than from the open systems and they grew more quickly. More than half the liveborn mortality occurred during the first four days after parturition. In the open systems, 17 per cent and 14 per cent of the piglets born alive were crushed, compared with only 8 per cent in the crates. In the second experiment, 29 sows and litters were studied in detail in a communal pen system during the first seven days of lactation. Three-quarters of the liveborn mortality was due to crushing. The total number of piglets dying per litter, including stillbirths, was significantly associated with the total litter size and the sow's parity. The percentage liveborn mortality was significantly associated with the parity and body length of the sows and with the within-litter variation in the birth weight of the piglets. Individual birth weight was closely associated with percentage survival. Only 28 per cent of piglets weighing less than 1.1 kg at birth survived to seven days.
Dietary guar gum and cellulose were studied as purified soluble and insoluble nonstarch polysaccharide (NSP) sources, respectively. A control diet containing 14% cornstarch was formulated. A 7% guar gum, a 7% cellulose, and a 7% guar gum + 7% cellulose diet were formulated by adding the NSP to the control diet at the expense of cornstarch (wt/wt), forming a 2 x 2 factorial arrangement. The objectives were to determine whether guar gum and cellulose altered 1) the passage rate of digesta through the small intestine and total tract; 2) the digestibility of energy and CP, characteristics of the digesta, and microbial populations in the ileum; 3) plasma glucose and ghrelin concentrations; and 4) short-term voluntary feed intake and growth performance of grower pigs. In Exp. 1, 12 pigs (27.0 +/- 1.5 kg of BW) were fitted with an ileal T-cannula and were used in a 2-period change-over design, providing 6 observations per diet. Each period included 18 d: a 12-d acclimation period followed by 2-d feces, 3-d digesta, and 1-d venous blood collection periods. In Exp. 1, guar gum and cellulose slowed the passage rate of digesta through the small intestine by 26 and 18%, respectively (P < 0.05). Guar gum increased total tract retention time of the digesta by 14% (P < 0.05). Guar gum and cellulose increased the viscosity of ileal digesta by 72 and 76%, respectively (P < 0.05). Cellulose reduced ileal energy and CP digestibility (P < 0.05), but guar gum only tended to decrease ileal energy digestibility (P < 0.10). Guar gum and cellulose reduced total tract energy and CP digestibility (P < 0.05). At 60 min after feeding, guar gum decreased plasma glucose by 10% (P < 0.10). Guar gum interacted with cellulose to reduce plasma ghrelin before and after feeding (P < 0.05). Guar gum and cellulose interacted to increase ileal bifidobacteria and enterobacteria (P < 0.05); however, guar gum, but not cellulose, increased ileal clostridia (P < 0.05). In Exp. 2, 20 individually housed grower pigs (5 pigs per diet) had free access to the 4 diets used in Exp. 1 for 14 d. Guar gum and cellulose decreased ADG and reduced ADFI on d 0 to 14 (P < 0.05). In summary, increasing purified NSP in the diet reduced the passage rate of digesta, energy and protein digestibility, and feed intake, but increased ileal bifidobacteria and enterobacteria populations. The effects of cellulose were similar to those of guar gum. In conclusion, monitoring of dietary NSP is a critical factor to achieve predictable digestible nutrient intake and intestinal bacterial populations.
The impact of dietary fiber on fecal digestion is well-known and provides a comprehensive approach toward nutrient digestibility and availability. Little quantitative information is available on digestion of fiber in the different segments of the gastrointestinal tract (GIT). The objectives of this study were to obtain a method allowing the quantification of the digestive process in different segments of the GIT and to study the impact of dietary fiber on nutrient digestibility. Six barrows (average initial BW of 30 kg and fitted with a simple T-cannula at the proximal duodenum and caudal ileum) were used in a replicated 3 x 3 Latin square design. In each period, pigs were offered 1 of 3 diets differing in fiber content (low, medium, and high). Differences in fiber content were created by replacing wheat and barley with wheat bran. Titanium dioxide was included in the diet as an indigestible marker to determine the apparent digestibility coefficients in different segments of the GIT. The apparent digestibility of ash, CP, DM, and OM increased in the different segments of the GIT. Duodenal digestibility coefficients were negative for ash (e.g., -39.9% for the medium- and high-fiber diets), indicating important endogenous mineral secretions by the stomach and digestive glands. The duodenal digestibility of other nutrients and OM were positive but close to zero and numerically lower in the diets with the greater fiber contents. The fiber content in the diet did not affect the apparent ileal digestibility of nutrients. Increasing the fiber content in the diet affected the fecal digestibility of CP, ether extract, and energy (P < 0.01). The method used for studying sites of digestion in the digestive tract provides promising results, but it is limited due to the high variability that is likely caused by sampling limitations and variation between animals.
The objective of these studies was to determine if dietary enzymes increase the digestibility of nutrients bound by nonstarch polysaccharides, such as arabinoxylans, or phytate in wheat millrun. Effects of millrun inclusion rates (20 or 40%), xylanase (0 or 4,375 units/kg of feed), and phytase (0 or 500 phytase units/kg of feed) on nutrient digestibility and growth performance were investigated in a 2 x 2 x 2 factorial arrangement with a wheat control diet (0% millrun). Diets were formulated to contain 3.34 Mcal of DE/kg and 3.0 g of true ileal digestible Lys/Mcal of DE and contained 0.4% chromic oxide. Each of 18 cannulated pigs (36.2 +/- 1.9 kg of BW) was fed 3 diets at 3x maintenance in successive 10-d periods for 6 observations per diet. Feces and ileal digesta were collected for 2 d. Ileal energy digestibility was reduced (P < 0.01) linearly by millrun and increased by xylanase (P < 0.01) and phytase (P < 0.05). Total tract energy digestibility was reduced linearly by millrun (P < 0.01) and increased by xylanase (P < 0.01). For 20% millrun, xylanase plus phytase improved DE content from 3.53 to 3.69 Mcal/kg of DM, a similar content to that of the wheat control diet (3.72 Mcal/kg of DM). Millrun linearly reduced (P < 0.01) ileal digestibility of Lys, Thr, Met, Ile, and Val. Xylanase improved (P < 0.05) ileal digestibility of Ile. Phytase improved ileal digestibility of Lys, Thr, Ile, and Val (P < 0.05). Millrun linearly reduced (P < 0.05) total tract P and Ca digestibility and retention. Phytase (P < 0.01) and xylanase (P < 0.05) improved total tract P digestibility, and phytase and xylanase tended to improve (P < 0.10) P retention. Phytase improved Ca digestibility (P < 0.05) and retention (P < 0.01). The 9 diets were also fed for 35 d to 8 individually housed pigs (36.2 +/- 3.4 kg of BW) per diet. Millrun reduced (P < 0.05) ADFI, ADG, and final BW. Xylanase increased (P < 0.05) G:F; phytase reduced (P < 0.05) ADFI; and xylanase tended to reduce (P = 0.07) ADFI. In summary, millrun reduced energy, AA, P, and Ca digestibility and growth performance compared with the wheat control diet. Xylanase and phytase improved energy, AA, and P digestibility, indicating that nonstarch polysaccharides and phytate limit nutrient digestibility in wheat byproducts. The improvement by xylanase of energy digestibility coincided with improved G:F but did not translate into improved ADG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.