[1] Worldwide observations of the cosmic ray ground level enhancement (GLE) of 20 January 2005 are used to investigate a commonly observed but poorly understood feature of this class of event. It is argued that the GLE comprised two distinctly different cosmic ray populations. The first resulted in an impulsive, highly anisotropic, field-aligned pulse with a relatively hard rigidity spectrum and significant velocity dispersion. The characteristics of the anisotropy were almost identical to those for similar impulsive increases observed during GLEs in 1960GLEs in , 1978GLEs in , and 1989. The p 0 g ray observations from the RHESSI and CORONAS-F spacecraft and Type III radio emissions yield a path length of 1.76 ± 0.1 AU to Earth for the first pulse. After the highest energies in the initial anisotropic pulse had passed Earth, another field-aligned but mildly anisotropic cosmic ray pulse developed slowly worldwide, exhibiting the characteristics of the conventional GLE. The risetime and anisotropy of this second population indicate substantial scattering, apparently at variance to the essentially scatter-free nature of the initial pulse. We show that the coexisting scatter-free initial impulsive increase and the diffusive character of the second pulse are consistent with the standard quasi-linear theory of pitch angle diffusion. Throughout the GLE, the anisotropy remained field-aligned, and a third maximum, seen by some stations, is shown to be due to changes in the direction of the heliospheric magnetic field (HMF). Examination of 22 large (>20%) GLEs in the historical record shows that the impulsive pulse never occurs after the commencement of the P2 pulse, indicating that the impulsive-gradual combination is not due to a chance sampling of differing scattering regions of the HMF. It is further shown that impulsive pulses, or their equivalents, have been observed in 13 out of the 15 GLEs associated with solar activity in the solar longitude range 24°-98°W, leading us to propose that the event of 20 January 2005 should be regarded as the defining example of the GLE. The observations lead us to propose two separate acceleration episodes in the typical GLE: (1) acceleration directly associated with the flare itself and located in the lower corona and (2) acceleration by a supercritical shock driven by the associated coronal mass ejection, located at $3-5 solar radii and farther in the upper corona. A one-to-one association with so-called impulsive and gradual solar energetic particle events at lower energies is proposed. On the basis of these observations, a generic model for the GLE is proposed.
A latitude survey of the cosmic ray intensity at sea level was conducted during the 1986/1987 solar minimum period on commercial vessels of the South African Marine Corporation (SAFMARINE). The results show that the differential response function for the 1986/1987 solar minimum agrees well with that measured in 1965. Both these response functions are significantly lower than those for 1976 and 1954. This result supports the 22‐year modulation cycle as predicted, for example, by models including drift effects of the charged cosmic ray particles in the large‐scale interplanetary magnetic field. A cross‐over of the spectra at rigidities of about 7 GV was also observed. Such a crossover is necessary to explain both the stationary neutron monitor counting rates and the lower‐energy balloon and space observations in consecutive solar cycles.
[1] The solar minimum of 2009 was characterized by a prolonged increase toward the maximum cosmic ray intensity, which was higher than it was during the maxima of 22 and 44 years ago. In the previous two so-called qA <0 (solar dipole moment facing South) magnetic cycles, these increases were more sharply peaked than in 2009. The observations of the Sanae, Hermanus, Potchefstroom, and Tsumeb neutron monitors are used to investigate this behavior in terms of propagation conditions due to solar activity, the heliospheric magnetic field, and the profile of the wavy current sheet in the field. This 2009 cosmic ray maximum can only be understood after an investigation of the long-term cosmic ray record. This study is augmented by observations of eight other neutron monitors. During 2009, solar activity parameters were significantly different from previous solar minima: The sun was much quieter, and the the heliospheric magnetic field was more than 20% weaker than during other recent minima. Both of these parameters imply a higher cosmic ray diffusion coefficient, which provides a natural explanation for both the higher galactic cosmic ray intensities that were observed and the absence of such an effect for anomalous cosmic rays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.