A complex relationship exists between long-term intake of selenium and selenium status, and subjects living in the excess area are more saturated with selenium than anticipated. More than two months of depletion are required to affect urinary excretion of selenium.
Twenty-nine women and fifteen men from an area of low Se intake (South Island of New Zealand) consumed 100 μg stable 74Se, as selenate given in water after an overnight fast, and blood was collected for 3 weeks. They were then divided into five groups and supplemented with 0, 10, 20, 30 and 40 μg Se/d (as selenomethionine) for 5 months. After 5 months, they received a second dose of 74Se identical to the first. Supplementation significantly altered retention of 74Se in the plasma, but not in the erythrocytes or platelets. Subjects receiving the placebo retained the greatest amount, and subjects receiving 30 μg supplemental Se/d retained the least 74Se. Supplementation resulted in relatively more isotope being retained in a medium molecular mass protein considered to be albumin, and relatively less in another fraction considered to be selenoprotein P. The lack of many observed changes in retention of stable Se, and the shift in retention among the plasma proteins, suggests that supplemental Se was not being used to replete critical pools of Se, probably because of adaptation to low Se intake.
The purpose of the present study was to investigate the effects of Se restriction on the excretion of Se in men who had consumed high levels of this element during their entire lives. With the use of stable isotopes of Se as selenite, the excretion of methylated Se in urine was investigated in Chinese men (n 10) who had habitual chronic high intakes of this element. The relationship between either urine Se or trimethylselenonium (TMSe) to the estimated long-term Se intake was not linear over the entire range of intake, which was also true for the infusion of labelled selenite. A non-linear relationship was also found between urine TMSe and urine Se both for TMSe arising from catabolism of endogenous body Se and that from infused selenite. The data suggest a close precursor–product relationship of urine Se and its TMSe component based on the nearly identical specific activities for these two selenocompounds. Although dimethylselenide in breath was not measured in the present study, combining urinary TMSe with this breath test may be more useful in the assessment of long-term Se status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.