Lettuce seeds (Lactuca sativa L. cv. Grand Rapids) stimulated to germinate by gibberellin and red light produce large amounts of endo-β-mannanase. This enzyme increases markedly following radicle emergence and is capable of degrading mannose-containing polysaccharides, which are the major components of the endosperm cell wall. Non-germinated seeds contain little enzyme and under conditions where gibberellin- or red light-stimulated germination is prevented (eg. by abscisic acid or prolonged far red light) enzyme levels remain low. Cycloheximide inhibits the increase in enzyme levels when supplied to germinating seeds, but the enzyme once produced is stable in vivo in the presence of this inhibitor for at least 24h. The majority of the extractable mannanase activity is located in the endosperm and we propose that the function of this enzyme is to mobilise the endosperm cell wall polysaccharides as a nutrient source for the growing embryo.
Endo-β-mannanase (EC 3.2.1.78) is produced and secreted by the cells of the endosperm of lettuce (lactuca sativa L.) "seeds" (achenes). In imbibed intact seeds, production is prevented by inhibitors. If the endosperm is incubated alone, these inhibitors can be removed by leaching, allowing mannanase production. Abscisic acid, a component of lettuce seeds, inhibits the production of mannanase in the isolated endosperm, and may be involved in regulation of mannanase production in intact seeds. During germination the inhibition is removed, beginning 4-8 h after red-light irradiation, which was given 4 h from sowing. The cotyledons participate in this process, and are controlled by events occuring in the axis within 4 h from red-light irradiation. This control by the axis apparently depends on the exchange of diffusible substances. Both benzyladenine and gibberellic acid can replace the influence of the axis if the latter is removed, and may therefore be involved in the control by the axis of the rest of the seed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.