XLPRA2 is an early-onset model of XLRP that is morphologically characterized by abnormal photoreceptor maturation followed by progressive rod-cone degeneration and early inner retina remodeling. The results suggest that therapeutic strategies for this retinal degeneration should target not solely photoreceptor cells but also inner retinal neurons.
To improve the potency of 2-pralidoxime (2-PAM) for treating organophosphate poisoning, we dimerized 2-PAM and its analogs according to Wilson's pioneering work and the 3D structure of human acetylcholinesterase (hAChE) inactivated by isoflurophate. 1,7-Heptylene-bis-N,N'-syn-2-pyridiniumaldoxime, the most potent of the alkylene-linked dimeric reactivators, was readily synthesized using bistriflate and is 100 times more potent than 2-PAM in reactivating hAChE poisoned by isoflurophate. Experimental and computational studies confirm that 2-PAM in its biologically active form adopts the syn-I configuration. Further, they suggest that the improved performance of dimeric oximes is conferred by two-site binding with one oxime pointing toward the diisopropyl ester at the catalytic site of hAChE and the other anchored at the peripheral site. This type of binding may induce a conformational change in the acyl pocket loop which modulates the catalytic site via a domino effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.