The interference with immediate and delayed type skin tests may imply that a therapeutic benefit of omalizumab treatment, if present at all, would be seen in patients with acute rather than chronic forms of the disease.
Summan For successful photodynamic diagnosis (PDD) and effective photodymamic therapy (PDT) with the clinically used 'photosensitiser' 5-aminolaevulinic acid (ALA)
Deposition of autoantibodies (a-BP180 and BP230) and complement along the dermal-epidermal-junction is a hallmark of bullous pemphigoid and was shown to be important for pathogenesis. Given the adverse effects of standard treatment (glucocorticoids, immunosuppressants), there is an unmet need for safe and effective therapies. In this phase 1 trial, we evaluated the safety and activity of BIVV009 (sutimlimab, previously TNT009), a targeted C1s inhibitor, in 10 subjects with active or past bullous pemphigoid (NCT02502903). Four weekly 60 mg/kg infusions of BIVV009 proved sufficient for inhibition of the classical complement pathway in all patients, as measured by CH50. C3c deposition along the dermal-epidermal junction was partially or completely abrogated in 4 of 5 patients, where it was present at baseline. BIVV009 was found to be safe and tolerable in this elderly population, with only mild to moderate adverse events reported (e.g., headache, fatigue). One serious adverse event (i.e., fatal cardiac decompensation) occurred at the end of the post-treatment observation period in an 84-year-old patient with a history of diabetes and heart failure, but was deemed unlikely to be related to the study drug. This trial provides the first results with a complement-targeting therapy in bullous pemphigoid, to our knowledge, and supports further studies on BIVV009's efficacy and safety in this population.
The degradation of sensitizers used in photodynamic therapy (PDT) involves photooxidation either by molecular oxygen or by oxygen intermediates which leads to hydroxyaldehyde and formyl products or to ring opening. Our investigations focused on the spectroscopic changes which protoporphyrin-dimethylester (PP) exhibits upon irradiation. As the microenvironment strongly influences the effects, we used an aprotic organic solvent, L-alpha-phosphatidylcholine dioleoyl (DOPC) liposomes and isogenic fibrosarcoma cells (SSKII) as carriers for PP. Hydroxyaldehyde product isomers develop a new absorption band centred around 670 nm and a new emission band at 676 nm. These characteristics can be used to discriminate them from formyl products and intact PP. In organic solvents, the formation of the hydroxyaldehyde products dominates. In DOPC liposomes and cells, the hydroxyaldehyde yield drops and photooxidation results in attack of the macrocycle. Time-resolved fluorescence spectroscopy of monomeric PP in an organic solvent gives a monoexponential decay time tau of 10.1 +/- 1.3 ns. Upon irradiation a second component with a decay time of 4.9 +/- 0.6 ns, resulting from the hydroxyaldehyde product, was detected. In liposomes and cells the monomeric decay time was significantly longer (15 ns) due to the altered microenvironment. Additionally, we observed in liposomes and in cells a small contribution of a short component (1 ns) which is attributed to an aggregated sensitizer species. In irradiated cells the aggregated fraction doubles, indicating a change in the microenvironment caused by the photodynamic action of the sensitizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.