Accurate automated detection of road pavement distresses is critical for the timely identification and repair of potentially accident-inducing road hazards such as potholes and other surface-level asphalt cracks. Deployment of such a system would be further advantageous in low-resource environments where lack of government funding for infrastructure maintenance typically entails heightened risks of potentially fatal vehicular road accidents as a result of inadequate and infrequent manual inspection of road systems for road hazards.To remedy this, a recent research initiative organized by the Institute of Electrical and Electronics Engineers ("IEEE") as part of their 2020 Global Road Damage Detection ("GRDC") Challenge published in May 2020 a novel 21,041 annotated image dataset of various road distresses calling upon academic and other researchers to submit innovative deep learning-based solutions to these road hazard detection problems. Making use of this dataset, we propose a supervised object detection approach leveraging You Only Look Once ("YOLO") and the Faster R-CNN frameworks to detect and classify road distresses in real-time via a vehicle dashboard-mounted smartphone camera, producing 0.68 F1-score experimental results ranking in the top 5 of 121 teams that entered this challenge as of December 2021.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.