Impairment of the insulin regulation of energy metabolism is considered to be an etiologic key component for metabolic disturbances. Methods for studies of insulin sensitivity thus are highly topical. There are clear indications that reduced insulin sensitivity contributes to the metabolic disturbances that occurs especially among obese lactating cows. Direct measurements of insulin sensitivity are laborious and not suitable for epidemiological studies. We have therefore adopted an indirect method originally developed for humans to estimate insulin sensitivity in dairy cows. The method, "Revised Quantitative Insulin Sensitivity Check Index" (RQUICKI) is based on plasma concentrations of glucose, insulin and free fatty acids (FFA) and it generates good and linear correlations with different estimates of insulin sensitivity in human populations. We hypothesized that the RQUICKI method could be used as an index of insulin function in lactating dairy cows. We calculated RQUICKI in 237 apparently healthy dairy cows from 20 commercial herds. All cows included were in their first 15 weeks of lactation. RQUICKI was not affected by the homeorhetic adaptations in energy metabolism that occurred during the first 15 weeks of lactation. In a cohort of 24 experimental cows fed in order to obtain different body condition at parturition RQUICKI was lower in early lactation in cows with a high body condition score suggesting disturbed insulin function in obese cows. The results indicate that RQUICKI might be used to identify lactating cows with disturbed insulin function. FindingsIn humans the prevalence of obesity, overweight and other food related problems are increasing in many areas in the world with a number of metabolic diseases as a consequence [1]. There is general agreement that the etiologic key component in the pathogenesis of these metabolic diseases is insulin resistance (IR). Insulin resistance is defined as a condition when higher than normal insulin concentrations are needed to achieve normal metabolic responses [2]. One general effect of disturbed insulin function in man is infiltration of fat in the liver which in turn may give rise to a number of pathological changes [3,4]. Also in dairy cows obesity and fatty liver occur frequently and the fat cow syndrome is a well-known problem [5].The importance of IR as the primary etiological factor in the development of metabolic disturbances has increased the interest for measurement of insulin sensitivity. It is not possible to estimate insulin sensitivity only by determination of the plasma concentration. Different kinds of glucose tolerance tests (GTT) used in clinical investigations need time and are not suitable for epidemiological investigations. In lactating dairy cows about 80 % of the cellu-
Increased lipolysis, low insulin/glucagon ratios and malonyl-CoA concentrations are prerequisites for ketogenesis. From an aetiological viewpoint, there are two quite different types of metabolic drsorders in which ketosis can occur, the hypoglycaemic-hypoinsulinaemic and the hyperglycaemic-hyperinsulinaemic type. The former, Type I, generally occurs 3-6 weeks after calving in cows whose milk secretion is so extensive that the demand for glucose exceeds the capacity for glucose production. To protect the body from hazardous protein degradation by a high rate of
We have studied the effect of plasma glucose level on the abomasal outflow rate of fluid using a hyperinsulinemic glucose clamp technique in dairy cows. Four nonpregnant, nonlactating cows were subjected to one of the following treatments: hyperinsulinemic normoglycemic clamp; hyperinsulinemic hypoglycemic clamp; hyperinsulinemic hyperglycemic clamp; or, as a control, an intravenous infusion of .9% sodium chloride in a Latin square design. The cows were previously fitted with a permanent fistula in the abomasum and the outflow rate of abomasal fluid was determined using Co-EDTA as a marker assuming that the outflow followed first-order kinetics. The abomasal pH was also registered. Insulin was infused continuously through a jugular catheter at a rate of 4.8 mU. kg(-1)min(-1) for 2.5 h in the three clamp treatments. A glucose solution was infused through the catheter at a variable rate to achieve a circulating concentration, near the preinfusion glucose level (approximately 4.1 mmol/L), 2 mmol/L below the preinfusion level, and 2 mmol/L above the preinfusion level for the three hyperinsulinemic treatments, respectively. There was a significant effect of treatment on the rate of abomasal outflow (P < .001). The rate of abomasal outflow was highest for the control treatment (7.8%/min). The slowest outflow was observed in the hyperglycemic cows (3.40%/min). The hypoglycemic and normoglycemic cows showed intermediate rates (6.0%/min and 5.2%/min, respectively). The rate of outflow for the hyperglycemic cows was significantly lower than for all the other treatments (P < .01). Abomasal pH was affected by treatment (P < .05). The highest pH was observed in the hyperglycemic cows (pH 2.3). The values for the other three treatments ranged from pH 1.9 to 2.0. These results show that hyperglycemia reduced the rate of outflow and increased the pH of abomasal fluid in dairy cows. An elevated plasma glucose level thus can be considered as a potential risk factor in the pathogenesis of left-displaced abomasum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.