Recent changes in the seasonal timing (phenology) of familiar biological events have been one of the most conspicuous signs of climate change. However, the lack of a standardized approach to analysing change has hampered assessment of consistency in such changes among different taxa and trophic levels and across freshwater, terrestrial and marine environments. We present a standardized assessment of 25 532 rates of phenological change for 726 UK terrestrial, freshwater and marine taxa. The majority of spring and summer events have advanced, and more rapidly than previously documented. Such consistency is indicative of shared large scale drivers. Furthermore, average rates of change have accelerated in a way that is consistent with observed warming trends. Less coherent patterns in some groups of organisms point to the agency of more local scale processes and multiple drivers. For the first time we show a broad scale signal of differential phenological change among trophic levels; across environments advances in timing were slowest for secondary consumers, thus heightening the potential risk of temporal mismatch in key trophic interactions. If current patterns and rates of phenological change are indicative of future trends, future climate warming may exacerbate trophic mismatching, further disrupting the functioning, persistence and resilience of many ecosystems and having a major impact on ecosystem services.
in all months, and mean precipitation increased in most months (Fig. 2a). 68Spatial variability in climatic change (Fig. 2b,c), necessitates local matching of phenological 69 and climatic datasets rather than the use of regionally-averaged climate data (e.g. Central 70England Temperatures) or large-scale climatic indicators (e.g. North Atlantic Oscillation). 71We did not make the restrictive assumption that biological events would be related to annual CSP precip varied less among trophic levels than the upper limit (Fig. 3d,f) consumers were less than those for primary consumers (Fig. 5a). This occurred because, 195averaged across species, the opposing climate responses of primary producers and secondary 196consumers are more similar in magnitude than are those for primary consumers (Fig. 3), 197 effectively "cancelling each other out". Our models suggest greater average advances for 198 crustacea, fish and insects than for other groups, such as freshwater phytoplankton, birds and 199 mammals (Fig. 5b). However, response-variation is high for crustacea (Fig. 5b). not estimated for marine plankton data (see above), and so the second-phase LME models 441 were run twice: once to examine correlations with temperature and precipitation for all but 442 the marine plankton phenological series (9,800 series), and once to examine only correlations 443 with temperature for the whole data set (10,003 series).
Abstract:Tracer investigations were combined with a geographical information system (GIS) analysis of the 31 km 2 Girnock catchment (Cairngorm Mountains, Scotland) in order to understand hydrological functioning by identifying dominant runoff sources and estimating mean residence times. The catchment has a complex geology, soil cover and topography. Gran alkalinity was used to demonstrate that catchment geology has a dominant influence on baseflow chemistry, but flow paths originating in acidic horizons in the upper soil profiles controlled stormflow alkalinity. Chemically based hydrograph separations at the catchment scale indicated that ¾30% of annual runoff was derived from groundwater sources. Similar contributions (23-36%) were estimated for virtually all major sub-basins. υ 18 O of precipitation (mean: 9Ð4‰; range: 16Ð1 to 5Ð0‰) and stream waters (mean: 9Ð1‰; range: 11Ð6 to 7Ð4‰) were used to assess mean catchment and sub-basin residence times, which were in the order ¾4-6 months. GIS analysis showed that these tracer-based diagnostic features of catchment functioning were consistent with the landscape organization of the catchment. Soil and HOST (Hydrology of Soil Type) maps indicated that the catchment and individual sub-basins were dominated by hydrologically responsive soils, such as peats (Histosol), peaty gleys (Histic Gleysols) and rankers (Umbric Leptosols and Histosols). Soil cover (in combination with a topographic index) predicted extensive areas of saturation that probably expand during hydrological events, thus providing a high degree of hydrological connectivity between catchment hillslopes and stream channel network. This was validated by aerial photographic interpretation and groundtruthing. These characteristics of hydrological functioning (i.e. dominance of responsive hydrological pathways and short residence times) dictate that the catchment is sensitive to land use change impacts on the quality and quantity of streamflows. It is suggested that such conceptualization of hydrological functioning using tracer-validated GIS analysis can play an important role in the sustainable management of river basins.
Allelic variation at seven hypervariable tri- and tetranucleotide microsatellite loci was used to determine levels of population differentiation between 14 populations of red grouse (Lagopus lagopus scoticus) in northeast Scotland, UK. Despite the potential for long-distance dispersal in grouse, and a semicontinuous habitat, significant population divergence was observed (mean RST = 0.153; P < 0.01) and an isolation-by-distance effect detected (Mantel test: P < 0.001). Examination of the spatial trend in principal component scores derived from allele frequencies among populations highlighted a barrier to gene flow that was confounding a simple isolation-by-distance effect. This barrier corresponded to an area of unsuitable habitat for grouse associated with a river system that bisected the study area. Mean genetic relatedness was higher for males than for females in all but one of the study populations, suggesting that the territorial behaviour and natal philopatry displayed by cocks have a manifold effect in generating the observed spatial genetic structure. Lower female relatedness values suggest a higher level of female-mediated gene flow, which is sufficient to prevent the loss of genetic variation from within populations and the onset of inbreeding effects. The potential consequences of local subdivision for red grouse populations are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.