This work shows that MR systems with a vertical bore design can be used to accurately measure cardiac function in both normal and chronically failing mouse hearts within one hour. The increased signal-to-noise ratio (SNR) due to the higher field strength could be exploited to obtain higher temporal and spatial resolution compared to previous studies that were performed on horizontal systems with lower field strengths.
Molecular imaging is an emerging technology at the life science/physical science interface which is set to revolutionize our understanding and treatment of disease. The tools of molecular imaging are the imaging modalities and their corresponding contrast agents. These facilitate interaction with a biological target at a molecular level in a number of ways. The diverse nature of molecular imaging requires knowledge from both the life and physical sciences for its successful development and implementation. The aim of this review is to introduce the subject of molecular imaging from both life science and physical science perspectives. However, we will restrict our coverage to the prominent in vivo molecular imaging modalities of magnetic resonance imaging, optical imaging and nuclear imaging. The physical basis of these imaging modalities, the use of contrast agents and the imaging parameters of sensitivity, temporal resolution and spatial resolution are described. Then, the specificity of contrast agents for targeting and sensing molecular events, and some applications of molecular imaging in biology and medicine are given. Finally, the diverse nature of molecular imaging and its reliance on interdisciplinary collaboration is discussed.
Stem cells offer a promising approach to the treatment of myocardial infarction and prevention of heart failure. We have used iron labeling of bone marrow stromal cells (BMSCs) to noninvasively track cell location in the infarcted rat heart over 16 weeks using cine-magnetic resonance imaging (cine-MRI) and to isolate the BMSCs from the grafted hearts using the magnetic properties of the donor cells. BMSCs were isolated from rat bone marrow, characterized by flow cytometry, transduced with lentiviral vectors expressing green fluorescent protein (GFP), and labeled with iron particles. BMSCs were injected into the infarct periphery immediately following coronary artery ligation, and rat hearts were imaged at 1, 4, 10, and 16 weeks postinfarction. Signal voids caused by the iron particles in the BMSCs were detected in all rats at all time points. In mildly infarcted hearts, the volume of the signal void decreased over the 16 weeks, whereas the signal void volume did not decrease significantly in severely infarcted hearts. High-resolution three-dimensional magnetic resonance (MR) microscopy identified hypointense regions at the same position as in vivo. Donor cells containing iron particles and expressing GFP were identified in MR-targeted heart sections after magnetic cell separation from digested hearts. In conclusion, MRI can be used to track cells labeled with iron particles in damaged tissue for at least 16 weeks after injection and to guide tissue sectioning by accurately identifying regions of cell engraftment. The magnetic properties of the iron-labeled donor cells can be used for their isolation from host tissue to enable further characterization.
Purpose:To assess the performance of motion gating strategies for mouse cardiac magnetic resonance (MR) at high magnetic fields by quantifying the levels of motion artifact observed in images and spectra in vivo.
Materials and Methods:MR imaging (MRI) of the heart, diaphragm, and liver; MR angiography of the aortic arch; and slice-selective 1 H-spectroscopy of the heart were performed on anesthetized C57Bl/6 mice at 11.75 T. Gating signals were derived using a custom-built physiological motion gating device, and the gating strategies considered were no gating, cardiac gating, conventional gating (i.e., blanking during respiration), automatic gating, and userdefined gating. Both automatic and user-defined modes used cardiac and respiratory gating with steady-state maintenance during respiration. Gating performance was assessed by quantifying the levels of motion artifact observed in images and the degree of amplitude and phase stability in spectra.Results: User-defined gating with steady-state maintenance during respiration gave the best performance for mouse cardiac imaging, angiography, and spectroscopy, with a threefold increase in signal intensity and a sixfold reduction in noise intensity compared to cardiac gating only.
Conclusion:Physiological gating with steady-state maintenance during respiration is essential for mouse cardiac MR at high magnetic fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.