Ground-and space-based planet searches employing radial velocity techniques and transit photometry have detected thousands of planet-hosting stars in the Milky Way. With so many planets discovered, the next step toward identifying potentially habitable planets is atmospheric characterization. While the Sun-Earth system provides a good framework for understanding the atmospheric chemistry of Earth-like planets around solar-type stars, the observational and theoretical constraints on the atmospheres of rocky planets in the habitable zones (HZs) around low-mass stars (K and M dwarfs) are relatively few. The chemistry of these atmospheres is controlled by the shape and absolute flux of the stellar spectral energy distribution (SED), however, flux distributions of relatively inactive low-mass stars are poorly understood at present. To address this issue, we have executed a panchromatic (X-ray to mid-IR) study of the SEDs of 11 nearby planet-hosting stars, the Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems (MUSCLES) Treasury Survey. The MUSCLES program consists visible observations from Hubble and ground-based observatories. Infrared and astrophysically inaccessible wavelengths (EUV and Lyα) are reconstructed using stellar model spectra to fill in gaps in the observational data. In this overview and the companion papers describing the MUSCLES survey, we show that energetic radiation (X-ray and ultraviolet) is present from magnetically active stellar atmospheres at all times for stars as late as M6. The emission line luminosities of C IV and Mg II are strongly correlated with band-integrated luminosities and we present empirical relations that can be used to estimate broadband FUV and XUV (≡X-ray + EUV) fluxes from individual stellar emission line measurements. We find that while the slope of the SED, FUV/NUV, increases by approximately two orders of magnitude form early K to late M dwarfs (≈0.01-1), the absolute FUV and XUV flux levels at their corresponding HZ distances are constant to within factors of a few, spanning the range 10-70 erg cm −2 s −1 in the HZ. Despite the lack of strong stellar activity indicators in their optical spectra, several of the M dwarfs in our sample show spectacular UV flare emission in their light curves. We present an example with flare/quiescent ultraviolet flux ratios of the order of 100:1 where the transition region energy output during the flare is comparable to the total quiescent luminosity of the star E flare (UV) ∼ 0.3 L * Δt (Δt = 1 s). Finally, we interpret enhanced L(line)/L Bol ratios for C IV and N V as tentative observational evidence for the interaction of planets with large planetary mass-to-orbital distance ratios (M plan /a plan ) with the transition regions of their host stars.
The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both FUV and NUV wavelengths. The combined FUV+NUV spectra are publically available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV quiet" M dwarfs are observed. The bright stellar Lyα emission lines are reconstructed, and we find that the Lyα line fluxes comprise ∼ 37 -75% of the total 1150 -3100Å flux from most M dwarfs; 10 3 times the solar value. We develop an empirical scaling relation between Lyα and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Lyα. The intrinsic unreddened flux ratio is F (Lyα)/F (Mg II) = 10 ± 3. The F (FUV)/F (NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O 2 and O 3 , is shown to be ∼ 0.5 -3 for all M dwarfs in our sample, > 10 3 times the solar ratio. For the four stars with moderate signal-to-noise COS time-resolved spectra, we find UV emission line variability with amplitudes of 50 -500% on 10 2 -10 3 s timescales. This effect should be taken into account in future UV transiting planet studies, including searches for O 3 on Earth-like planets. Finally, we observe relatively bright H 2 fluorescent emission from four of the M dwarf exoplanetary systems (GJ 581, GJ 876, GJ 436, and GJ 832). Additional modeling work is needed to differentiate between a stellar photospheric or possible exoplanetary origin for the hot (T (H 2 ) ≈ 2000 -4000 K) molecular gas observed in these objects.
Context. The main chromospheric activity indicator is the S index, which is the ratio of the flux in the core of the Ca II H and K lines to the continuum nearby, and is well studied for stars from F to K. Another chromospheric proxy is the Hα line, which is believed to be tightly correlated with the Ca II index. Aims. In this work we characterize both chromospheric activity indicators, the one associated with the H and K Ca II lines and the other with Hα, for the whole range of late type stars, from F to M. Methods. We present periodic medium-resolution echelle observations covering the complete visual range, taken at the CASLEO Argentinean Observatory over 7 years. We use a total of 917 flux-calibrated spectra for 109 stars that range from F6 to M5. We statistically study these two indicators for stars of different activity levels and spectral types. Results. We directly derive the conversion factor that translates the known S index to flux in the Ca II cores, and extend its calibration to a wider spectral range. We investigate the relation between the activity measurements in the calcium and hydrogen lines, and found that the usual correlation observed is the product of the dependence of each flux on stellar colour, and not the product of similar activity phenomena.
We present an all-sky catalog of 2970 nearby (d 50 pc), bright (J < 9) M-or late Ktype dwarf stars, 86% of which have been confirmed by spectroscopy. This catalog will be useful for searches for Earth-size and possibly Earth-like planets by future spacebased transit missions and ground-based infrared Doppler radial velocity surveys. Stars were selected from the SUPERBLINK proper motion catalog according to absolute magnitudes, spectra, or a combination of reduced proper motions and photometric colors. From our spectra we determined gravity-sensitive indices, and identified and removed 0.2% of these as interloping hotter or evolved stars. Thirteen percent of the stars exhibit Hα emission, an indication of stellar magnetic activity and possible youth. The mean metallicity is [Fe/H] = -0.07 with a standard deviation of 0.22 dex, similar to nearby solar-type stars. We determined stellar effective temperatures by least-squares fitting of spectra to model predictions calibrated by fits to stars with established bolometric temperatures, and estimated radii, luminosities, and masses using empirical relations. Six percent of stars with images from integral field spectra are resolved doubles. We inferred the planet population around M dwarfs using Kepler data and applied this to our catalog to predict detections by future exoplanet surveys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.