The 3D structures of human therapeutic targets are enabling for drug discovery. However, their purification and crystallization remain rate determining. In individual cases, ligands have been used to increase the success rate of protein purification and crystallization, but the broad applicability of this approach is unknown. We implemented two screening platforms, based on either fluorimetry or static light scattering, to measure the increase in protein thermal stability upon binding of a ligand without the need to monitor enzyme activity. In total, 221 different proteins from humans and human parasites were screened against one or both of two sorts of small-molecule libraries. The first library comprised different salts, pH conditions, and commonly found small molecules and was applicable to all proteins. The second comprised compounds specific for protein families of particular interest (e.g., protein kinases). In 20 cases, including nine unique human protein kinases, a small molecule was identified that stabilized the proteins and promoted structure determination. The methods are cost-effective, can be implemented in any laboratory, promise to increase the success rates of purifying and crystallizing human proteins significantly, and identify new ligands for these proteins.chemical biology ͉ crystallography ͉ human S tructural, functional, and chemical genomics (proteomics) are disciplines that aim to determine the biochemical, cellular, and physiological functions of proteins on a genome scale. Many of the central, important experimental approaches that are involved, such as protein-based screens for small-molecule inhibitors, depend on the availability of purified and active proteins. To meet this demand, many large projects are devoted to developing methods to generate large numbers of purified proteins. However, the task is proving challenging: on average, for proteins from prokaryotes, only 50-70% of soluble proteins and 30% of membrane proteins can be readily expressed in recombinant form, and only 30-50% of these expressed proteins can be purified to homogeneity (1, 2). The success rates for human proteins are predicted to be significantly lower.To improve the general rates of protein purification, efforts have focused largely on alterations of the recombinant host, the expression conditions, changes of the construct encoding the protein, and the purification conditions. It is also known that the expression and purification of a protein can be improved significantly by the addition of a specific ligand, which serves to stabilize the protein, thereby reducing its propensity to unfold, aggregate, or succumb to proteolysis. This parameter has not been studied systematically, although in individual cases the addition of a specific ligand has had dramatic effects. For example, the recombinant expression of the guinea pig and human forms of the enzyme 11-hydroxysteroid dehydrogenase-1 in bacteria was increased dramatically by the addition of an inhibitor of the enzyme to the growing cells (3) Wu, K. L. Kav...
Peptidyl-prolyl isomerases catalyze the conversion between cis and trans isomers of proline. The cyclophilin family of peptidyl-prolyl isomerases is well known for being the target of the immunosuppressive drug cyclosporin, used to combat organ transplant rejection. There is great interest in both the substrate specificity of these enzymes and the design of isoform-selective ligands for them. However, the dearth of available data for individual family members inhibits attempts to design drug specificity; additionally, in order to define physiological functions for the cyclophilins, definitive isoform characterization is required. In the current study, enzymatic activity was assayed for 15 of the 17 human cyclophilin isomerase domains, and binding to the cyclosporin scaffold was tested. In order to rationalize the observed isoform diversity, the high-resolution crystallographic structures of seven cyclophilin domains were determined. These models, combined with seven previously solved cyclophilin isoforms, provide the basis for a family-wide structure∶function analysis. Detailed structural analysis of the human cyclophilin isomerase explains why cyclophilin activity against short peptides is correlated with an ability to ligate cyclosporin and why certain isoforms are not competent for either activity. In addition, we find that regions of the isomerase domain outside the proline-binding surface impart isoform specificity for both in vivo substrates and drug design. We hypothesize that there is a well-defined molecular surface corresponding to the substrate-binding S2 position that is a site of diversity in the cyclophilin family. Computational simulations of substrate binding in this region support our observations. Our data indicate that unique isoform determinants exist that may be exploited for development of selective ligands and suggest that the currently available small-molecule and peptide-based ligands for this class of enzyme are insufficient for isoform specificity.Enhanced version This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3-D representations and animated transitions. Please note that a Web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.
Calcium-dependent protein kinases (CDPKs) play pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites, and comprise a CaMK-like kinase domain regulated by a calcium-binding domain in the C-terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N-terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate-binding site. This large conformational change constitutes a distinct mechanism in calcium signal transduction pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.