Pulmonary inflammatory responses lie under circadian control; however, the importance of circadian mechanisms in the underlying fibrotic phenotype is not understood. Here, we identify a striking change to these mechanisms resulting in a gain of amplitude and lack of synchrony within pulmonary fibrotic tissue. These changes result from an infiltration of mesenchymal cells, an important cell type in the pathogenesis of pulmonary fibrosis. Mutation of the core clock protein REVERBα in these cells exacerbated the development of bleomycin-induced fibrosis, whereas mutation of REVERBα in club or myeloid cells had no effect on the bleomycin phenotype. Knockdown of REVERBα revealed regulation of the little-understood transcription factor TBPL1. Both REVERBα and TBPL1 altered integrinβ1 focal-adhesion formation, resulting in increased myofibroblast activation. The translational importance of our findings was established through analysis of 2 human cohorts. In the UK Biobank, circadian strain markers (sleep length, chronotype, and shift work) are associated with pulmonary fibrosis, making them risk factors. In a separate cohort, REVERBα expression was increased in human idiopathic pulmonary fibrosis (IPF) lung tissue. Pharmacological targeting of REVERBα inhibited myofibroblast activation in IPF fibroblasts and collagen secretion in organotypic cultures from IPF patients, thus suggesting that targeting of REVERBα could be a viable therapeutic approach.
BackgroundAsthma is an inflammatory disease of the airway showing a strong time of day rhythm. Airway hyperresponsiveness is a dominant feature of asthma, but it is not known if this is under clock control. The circadian clock powerfully regulates inflammation. The clock protein REV-ERBα is known to play a key role as a repressor of the inflammatory response.ObjectivesTo determine if allergy mediated airway hyperresponsiveness is gated by the clock protein, REV-ERBα.MethodsAfter exposure to the intra-nasal house dust mite allergen challenge model at either dawn or dusk, airway hyper-responsiveness to methacholine was measured invasively in mice.Main ResultsWild-type mice showed marked time-of-day differential responses of airway hyper-responsiveness (maximal at dusk, start of the active phase), both in vivo and ex vivo in precision cut lung slices. Hyper-responsive time of day effects were abolished in mice lacking the clock gene Rev-erbα, indicating that time-of-day effects on asthma responses are likely mediated via the circadian clock. We suggest that muscarinic receptors 1 and 3 (Chrm 1, 3) may play a role in this pathway.ConclusionsWe identify a novel circuit regulating a core process in asthma, potentially involving circadian control of muscarinic receptor expression, in a REV-ERBα dependent fashion.Clinical ImplicationThese insights suggest the importance of considering timing of drug administration in clinic trials, and in clinical practice; chronotherapy.
Pulmonary inflammatory responses lie under circadian control; however the importance of circadian mechanisms in fibrosis is not understood. Here, we identify a striking change to these mechanisms resulting in a gain of amplitude and lack of synchrony within pulmonary fibrotic tissue. These changes result from an infiltration of mesenchymal cells, an important cell type in the pathogenesis of pulmonary fibrosis. Mutation of the core clock protein REVERBα in these cells exacerbated the development of bleomycin-induced fibrosis, whereas mutation of REVERBα in club or myeloid cells had no effect on the bleomycin phenotype. Knockdown of REVERBα revealed regulation of the poorly described transcription factor TBPL1. Both REVERBα and TBPL1 altered integrinβ1 focal adhesion formation, resulting in increased myofibroblast activation. The translational importance of our findings was established through analysis of two human cohorts. In the UK Biobank circadian strain markers (sleep length, chronotype and shift work) are associated with pulmonary fibrosis making them novel risk factors. In a separate cohort REVERBα expression was increased in human idiopathic pulmonary fibrosis (IPF) lung tissue. Pharmacological targeting of REVERBα inhibited myofibroblast activation in IPF fibroblasts and collagen secretion in organotypic cultures from IPF patients, suggesting targeting REVERBα could be a viable therapeutic approach.SignificanceThe circadian clock plays an essential role in energy metabolism, and inflammation. In contrast the importance of the clock in the pathogenesis of fibrosis remains poorly explored. This study describes a striking alteration in circadian biology during pulmonary fibrosis where the relatively arrhythmic alveolar structures gain circadian but desynchronous rhythmicity due to infiltration by fibroblasts. Disruption of the clock in these cells, which are not widely implicated in circadian pathophysiology, results in a pro-fibrotic phenotype. Translation of these findings in humans revealed previously unrecognised important circadian risk factors for pulmonary fibrosis (sleep length, chronotype and shift work). In addition, targeting REVERBα repressed collagen secretion from human fibrotic lung tissue making this protein a promising therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.