Helium-cooled divertor concepts are considered suitable for use in fusion power plants for safety reasons, as they enable the use of a coolant compatible with any blanket concept, since water would not be acceptable, e.g. in connection with ceramic breeder blankets using large amounts of beryllium. Moreover, they allow for a high coolant exit temperature for increasing the efficiency of the power conversion system. Within the framework of the European power plant conceptual study, different helium-cooled divertor concepts based on different heat transfer mechanisms are being investigated at ENEA Frascati, Italy, and Forschungszentrum Karlsruhe, Germany. They are based on a modular design which helps reduce thermal stresses. The design goal is to withstand a high heat flux of about 10–15 MW m−2, a value which is considered relevant to future fusion power plants to be built after ITER. The development and optimization of the divertor concepts require an iterative design approach with analyses, studies of materials and fabrication technologies and the execution of experiments. These issues and the state of the art of divertor development shall be the subject of this report.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.