Inspired by the highly efficient information processing of the brain, which is based on the chemistry and physics of biological tissue, any material system and its physical properties could in principle be exploited for computation. However, it is not always obvious how to use a material system’s computational potential to the fullest. Here, we operate a dopant network processing unit (DNPU) as a tuneable extreme learning machine (ELM) and combine the principles of artificial evolution and ELM to optimise its computational performance on a non-linear classification benchmark task. We find that, for this task, there is an optimal, hybrid operation mode (“tuneable ELM mode”) in between the traditional ELM computing regime with a fixed DNPU and linearly weighted outputs (“fixed-ELM mode”) and the regime where the outputs of the non-linear system are directly tuned to generate the desired output (“direct-output mode”). We show that the tuneable ELM mode reduces the number of parameters needed to perform a formant-based vowel recognition benchmark task. Our results emphasise the power of analog in-matter computing and underline the importance of designing specialised material systems to optimally utilise their physical properties for computation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.