Fourteen polymer coatings were evaluated for their ability to promote and sustain dropwise condensation of steam. Nine of the coatings employed a fluoropolymer as a major constituent; four employed hydrocarbons and one a silicone. Each coating was applied to 25-mm-square by approximately 1-mm-thick metal substrates of brass, copper, copper–nickel, and titanium. While exposed to steam at atmospheric pressure, each coating was visually evaluated for its ability to promote dropwise condensation. Observations were also conducted over a period of 22,000 hr. Hardness and adhesion tests were performed on selected specimens. On the basis of sustained performance, six coatings were selected for application to the outside of 19-mm-dia copper tubes in order to perform a heat transfer evaluation. These tubes were mounted horizontally in a separate apparatus through which steam flowed vertically downward. Steam-side heat transfer coefficients were inferred from overall measurements. Test results indicate that the steam-side heat transfer coefficient can be increased by a factor of five to eight through the use of polymer coatings to promote dropwise condensation.
Hydrophobic coatings have been created through self-assembled monolayers (SAMs) on gold, copper, and copper-nickel alloy surfaces that enhance steam condensation through dropwise condensation. The monolayer is formed by chemisorption of alkylthiols on these metal surfaces. Due to their negligible thickness (10–15 Å), SAMs have negligible heat transfer resistance, and involve a minuscule amount of the organic material to pose any contamination problem to the system from erosion of the coating. The coating was applied directly to copper and 90/10 copper-nickel tubes, and to previously gold-sputtered aluminum tubes. The quality of the drops on SAMs, based on visual observation, was found to be similar for the three surfaces, with the gold surface showing a slight superiority. When compared to complete filmwise condensation, the SAM coating increased the condensation heat transfer coefficient by factors of 4 for gold-coated aluminum, and by about 5 for copper and copper-nickel tubes, under vacuum operation (10 kPa). The respective enhancements under atmospheric conditions were about 9 and 14. Comparatively, the heat transfer coefficient obtained with a bare gold surface (with no organic coating) was 2.5 times that of the filmwise condensation heat transfer coefficient under vacuum, and 3.4 at atmospheric conditions. [S0022-1481(00)02502-0]
Pool boiling heat-transfer measurements were made using a 15.8 mm o.d. plain copper tube and three copper enhanced surfaces: a Union Carbide High Flux surface, a Hitachi Thermoexcel-E surface and a Wieland Gewa-T surface. The dielectric fluids were Freon-113 and Fluorinert FC-72, a perfluorinated organic compound manufactured to cool electronic equipment. Data were taken at atmospheric pressure, and at heat fluxes from 100 W/m2 to 200,000 W/m2. Prior to operation, each test surface was subjected to one of three aging procedures to observe the effect of surface past history upon boiling incipience. For Freon-113 the enhanced surfaces showed a two to tenfold increase in the heat-transfer coefficient when compared to a plain tube, whereas for FC-72 an increase of two to five was measured. The High Flux surface gave the best performance over the range of heat fluxes. The Gewa-T surface did not show as much of an enhancement at low fluxes as the other two surfaces, but at high fluxes its performance improved. In fact, it was the only surface tested which delayed the onset of film boiling with FC-72. The degree of superheat required to activate the enhanced surfaces was sensitive to both past history of the surface and to fluid properties.
This paper reviews nearly fifty years of progress that has been made in our understanding of film condensation on horizontal, integral-fin tubes. Both experimental and theoretical developments pertaining to single tubes and tube bundles are discussed. Special attention is given to the importance of surface tension, and appropriate research directions are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.