SummaryWe explore the effect of noise on images obtained using quantitative phase-amplitude microscopy -a new microscopy technique based on the determination of phase from the intensity evolution of propagating radiation. We compare the predictions with experimental results and also propose an approach that allows good-quality quantitative phase retrieval to be obtained even for very noisy data.
Phase singularities are a ubiquitous feature of waves of all forms and represent a fundamental aspect of wave topology. An optical vortex phase singularity occurs when there is a spiral phase ramp about a point phase singularity. We report an experimental observation of an optical vortex in a field consisting of 9-keV x-ray photons. The vortex is created with an x-ray optical structure that imparts a spiral phase distribution to the incident wave field and is observed by use of diffraction about a wire to create a division-of-wave-front interferometer.
A measurement of the horizontal coherence function of 7.9 keV radiation from an undulator beam line at the Advanced Photon Source is reported. X-ray diffraction from a phase-shifting mask was used, and the coherence function was measured as a function of the width of beam-conditioning slits in the beam line. The coherence distribution is found to be best described by a Lorentzian function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.