The first of four successive pulses of the 1974 explosive eruption of Fuego volcano, Guatemala, produced a small volume (∼0.02 km3 DRE) basaltic sub-plinian tephra fall and flow deposit. Samples collected within 48 h after deposition over much of the dispersal area (7–80 km from the volcano) have been size analyzed down to 8 φ (4 µm). Tephra along the dispersal axis were all well-sorted (σ φ = 0.25–1.00), and sorting increased whereas thickness and median grain size decreased systematically downwind. Skewness varied from slightly positive near the vent to slightly negative in distal regions and is consistent with decoupling between coarse ejecta falling off the rising eruption column and fine ash falling off the windblown volcanic cloud advecting at the final level of rise. Less dense, vesicular coarse particles form a log normal sub-population when separated from the smaller (Mdφ < 3φ or < 0.125 mm), denser shard and crystal sub-population. A unimodal, relatively coarse (Mdφ = 0.58φ or 0.7 mm σ φ = 1.2) initial grain size population is estimated for the whole (fall and flow) deposit. Only a small part of the fine-grained, thin 1974 Fuego tephra deposit has survived erosion to the present day. The initial October 14 pulse, with an estimated column height of 15 km above sea level, was a primary cause of a detectable perturbation in the northern hemisphere stratospheric aerosol layer in late 1974 to early 1975. Such small, sulfur-rich, explosive eruptions may substantially contribute to the overall stratospheric sulfur budget, yet leave only transient deposits, which have little chance of survival even in the recent geologic record. The fraction of finest particles (Mdφ = 4–8φ or 4–63 µm) in the Fuego tephra makes up a separate but minor size mode in the size distribution of samples around the margin of the deposit. A previously undocumented bimodal–unimodal–bimodal change in grain size distribution across the dispersal axis at 20 km downwind from the vent is best accounted for as the result of fallout dispersal of ash from a higher subplinian column and a lower “co-pf” cloud resulting from pyroclastic flows. In addition, there is a degree of asymmetry in the documented grain-size fallout pattern which is attributed to vertically veering wind direction and changing windspeeds, especially across the tropopause. The distribution of fine particles (<8 µm diameter) in the tephra deposit is asymmetrical, mainly along the N edge, with a small enrichment along the S edge. This pattern has hazard significance
Grain size analysis of samples representing all sampleable portions of the airfall deposit produced by the Fuego volcano in Guatemala on 14 October 1974 form the basis for estimating the total grain size distribution of tephra from this eruption. The region enclosed by each isopach has a particular average grain size distribution which can be weighted proportionally to its percentage volume. The grain size of pyroclastic avalanche deposits produced during the eruption are also included. The total grain size distribution calculated as a sum of weighted distributions has a median grain size of 0.8∅ (0.6mm) and a sorting coefficient (σ∅) of 2.3. The size distribution seems to approximate Rosin and Rammler's law of crushing and this observation allows us to estimate that no more than 15% volume of the fine tail of the total size distribution is likely to be missing. The ash composed of these fine particles did not fall in the region of the volcano as part of the recognizable tephra blanket. The eruption column reached well into the stratosphere: heights estimated from the ground were 10‐12 km above sea level but estimated heights based on mass flux rates are higher (18‐23 km). The proportion of ash smaller than 2 µm, which could remain for substantial periods in the stratosphere, is no more than 0.8% volume of the total. It seems probable that acid aerosol particles from vulcanian type eruptions are more important to stratospheric aerosol perturbation than fine silicate ash particles by at least an order of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.