Erythropoietin (EPO) mRNA levels were measured by ribonuclease (RNase) protection in organs from unstimulated rats and from animals after normobaric hypoxia or hemorrhagic anemia. Both liver and kidney responded to stimulation with large increases in EPO mRNA, but the response characteristic to graded stimulation was different. The liver responded poorly to mild normobaric hypoxia, accounting for only 2 +/- 1% of total EPO mRNA at 11% O2, but hepatic EPO mRNA levels increased steeply with more severe hypoxia so that at 7.5% O2 the liver contributed to 33 +/- 7% of the total. After hemorrhagic anemia, the liver also responded more strongly to more severe stimulation, but at all points it accounted for a significant proportion of total EPO mRNA, contributing 18 +/- 6% after removal of 2.5 ml (hematocrit 37.2 +/- 1.3%), increasing to 37 +/- 14% after venesection of 10.5 ml (hematocrit 15.8 +/- 0.8%). Studies of EPO mRNA in other organs confirmed that EPO production outside the liver and kidney were quantitatively insignificant in stimulated animals. However, the hypoxia-induced increases in EPO mRNA in brain, testis, and spleen suggest the existence of an oxygen-sensing mechanism at other sites.
1. Exercise-induced pH changes in skeletal muscle were studied in a group of eight subjects with essential hypertension by using 31P n.m.r. spectroscopy. 2. Leucocyte Na+/H+ antiport activity was measured in vitro in the same subjects using a pH-sensitive fluorescent dye. 3. Resting skeletal muscle pH and unstimulated leucocyte pH values were similar to those in control subjects, but increased Na+/H+ antiport activity was demonstrated in the leucocytes from hypertensive subjects by acid loading in vitro. Decreased skeletal muscle acidification and an increased rate of pH recovery was also demonstrated in vivo in these same patients during an acid load induced by isotonic exercise. 4. These findings suggest that the increased cellular Na+/H+ antiport activity, which has been demonstrated in vitro in essential hypertension, also affects the biochemical response of skeletal muscle to physiological levels of exercise. This strengthens the argument that increased Na+/H+ antiport activity in hypertension is a generalized and physiologically relevant cellular abnormality.
Summary
The relationship between cardiovascular disease and cerebral infarction was analysed in a prospectively assessed post mortem series of 48 demented patients. Hypertension was rare in this group of patients whose mean age was 82.7 y. Atrial fibrillation was the most important underlying cardiac abnormality. It is suggested that atrial fibrillation is more important than hypertension in the aetiology of cerebral infarction in the very aged and that this may be relevant to the pathogenesis of cerebrovascular dementia.
We have used RNase protection to measure oxygen-dependent changes in erythropoietin (EPO) mRNA in isolated perfused kidneys and to compare the effect of hypoxia with the response to inhibitors of oxidative phosphorylation. In well-oxygenated kidneys perfused for 2 h at 12 ml/min, with hematocrit of 0.09 +/- 0.005 and PO2 of 443 +/- 67 mmHg, EPO mRNA levels were similar to the baseline levels measured in nonperfused contralateral kidneys from the same animals. When perfusions were performed under identical conditions but at a PO2 of 32 +/- 4 mmHg, EPO mRNA increased approximately 16-fold. In contrast, graded concentrations of cyanide (10, 100, and 300 microM and 1 mM), antimycin (0.01, 0.1, 0.5, and 1 microM), and oligomycin (0.01, 0.1, and 1 microM) did not alter EPO mRNA in well-oxygenated perfused kidneys. However, in kidneys perfused at low PO2 with a high concentration of each inhibitor, EPO mRNA levels were increased, demonstrating that the ability to respond to hypoxia was retained. Thus inhibitors of oxidative phosphorylation did not mimic the effects of hypoxia, indicating that oxygen-dependent expression of the EPO gene in the kidney is not effected through hypoxic compromise of oxidative phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.