The in¯uence of viral disease symptoms on the behaviour of virus vectors has implications for disease epidemiology. Here we show that previously reported preferential colonization of potatoes infected by potato leafroll virus (genus Polerovirus) (luteovirus) (PLRV) by alatae of Myzus persicae, the principal aphid vector of PLRV, is in¯uenced by volatile emissions from PLRV-infected plants. First, in our bioassays both differential immigration and emigration were involved in preferential colonization by aphids of PLRV-infected plants. Second, M. persicae apterae aggregated preferentially, on screening above lea¯ets of PLRV-infected potatoes as compared with lea¯ets from uninfected plants, or from plants infected with potato virus X (PVX) or potato virus Y (PVY). Third, the aphids aggregated preferentially on screening over lea¯et models treated with volatiles collected from PLRV-infected plants as compared with those collected from uninfected plants. The speci® c cues eliciting the aphid responses were not determined, but differences between headspace volatiles of infected and uninfected plants suggest possible ones.
Potato virus Y (PVY) is a serious potato pathogen that affects potato seed and commercial production crops. In recent decades, novel PVY strains have been described that cause necrotic symptoms on tobacco foliage and/or potato tubers. The major PVY strains that affect potato include PVY(O) and PVY(N), which have distinct serotypes that can be differentiated by immunoassay. Other economically important strain variants are derived from recombination events, including variants that cause tuber necrotic symptoms (PVY(NTN)) and PVY(O) serotypes that cause tobacco veinal necrosis (PVY(N)-W, PVY(N:O)). Although the PVY(NTN) and PVY(N)-W variants were first reported in Europe, apparently similar strains have been appearing in North America. Confirmation of the existence of these recombinant strains in North America is important, as is whether they spread from a common source or were derived by independent recombination. Whole genome sequencing can be used to positively identify strain variants and begin to address the issue of origins. Symptomology, serology, RT-PCR, and partial sequencing of the coat protein region were used to identify isolates of the PVY(NTN), PVY(N), PVY(NA-N), and PVY(N:O) for whole-genome sequencing. Sequencing confirmed the presence of PVY(NTN) and PVY(N) isolates that were >99% identical to European sequences deposited in GenBank in the 1990's. Sequences of the PVY(NA-N) and PVY(N:O) types were 99.0% and 99.5% identical to known sequences, respectively. There was no indication that recombinant strains PVY(NTN) or PVY(N:O) had different parental origins than recombinant strains previously sequenced. This is the first confirmation by whole-genome sequencing that "European"-type strain variants of PVY(N) and PVY(NTN) are present in North America, and the first reported full-length sequence of a tuber necrotic isolate of PVY(N:O).
The 3'-terminal nucleotide sequences of thirteen authenticated strains of bean common mosaic virus (BCMV) and one strain of bean common mosaic necrosis virus (BCMNV) were obtained. The regions sequenced included the coat protein coding sequence and 3'-end non-coding region. These data, combined with sequence information from other legume-infecting potyviruses and the Potyviridae were used for phylogenetic analysis. Evidence is provided for delineation of BCMNV as distinct from BCMV and the inclusion of azuki mosaic, dendrobium mosaic, blackeye cowpea mosaic, and peanut stripe viruses as strains of BCMV. This relationship defines the members of the BCMV and BCMNV subgroups. These data also provide a basis upon which to define virus strains, in combination with biological data. Other aspects and implications of legume-infecting potyvirus phylogenetics are discussed.
More than 50 isolates of Potato virus Y (PVY) with characteristics of strains that cause tobacco veinal necrosis (PVYN) were obtained from potatoes (Solanum tuberosum L.) grown in the northwestern United States. These isolates are being characterized at the biological and molecular levels. Isolate RR1 was obtained from leaves of potato cv. Ranger Russet showing distinct mottling and leaf deformity, which is in contrast to the leaf-drop and necrosis usually observed with ordinary strains of PVY (PVYO) in this variety. Isolate AL1 was obtained from tubers of potato cv. Alturas showing distinct internal light brown rings and blotches. When RR1 and AL1 were transmitted to tobacco (Nicotiana tabacum L. cvs. Samsun NN and 423), they caused systemic veinal necrosis, including stem and petiole lesions typical of PVYN strains (2). Symptoms induced by RR1 and AL1 on tobacco appeared 9 to 11 days after inoculation, whereas some other isolates caused delayed veinal necrosis. All isolates that produced veinal necrosis on tobacco were detectable with PVY polyclonal antisera. Potato virus X was not detected by enzyme-linked immunosorbent assay in tobacco plants showing veinal necrosis. Some isolates, including AL1, failed to react in serological tests using PVYN-specific monoclonal antibodies obtained from three commercial sources. Other isolates, including RR1, were detectable with these monoclonal antibodies. Reverse transcription-polymerase chain reaction (RT-PCR) products obtained with primers specific for the coat protein (CP) open reading frame (ORF) were cloned and sequenced. AL1 possesses a CP more closely related to PVYO type isolates, which would account for its failure to react with PVYN monoclonal antibodies. In this regard, AL1 is similar to the PVYN-Wilga isolate (1). Other isolates that are detectable with the PVYN monoclonal antibodies possess a CP more consistent with N strains of the virus. Results of RT-PCR tests using primers derived from the P1 ORF sequence (3), and the restriction enzyme analysis and sequencing of the RT-PCR products, all suggest that AL1 and RR1 are related to European-type members of PVY tuber necrotic (NTN) or N strains. However, other isolates under investigation appear to be more closely related to previously reported North American NTN types (3). The symptomatology of these viruses on tobacco and potato, and the serological and molecular data clearly show that at least two distinct variants of PVYN have been found for the first time in a major potato production area of the United States, and pose a potential threat to the potato industry. References: (1) B. Blanco-Urgoiti et al. Eur. J. Plant Pathol. 104:811, 1998. (2) J. A. de Bokx and H. Huttinga. Potato virus Y. Descriptions of Plant Viruses. No. 242, CMI/AAB, Surrey, England, 1981. (3) R. P. Singh et al. Can J. Plant Pathol. 20:227, 1998.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.