Abstract. We analyze a (possibly degenerate) second order mean field games system of partial differential equations. The distinguishing features of the model considered are (1) that it is not uniformly parabolic, including the first order case as a possibility, and (2) the coupling is a local operator on the density. As a result we look for weak, not smooth, solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as minimizers of two optimal control problems. We also show that such solutions are stable with respect to the data, so that in particular the degenerate case can be approximated by a uniformly parabolic (viscous) perturbation.
We consider a system of mean field games with local coupling in the deterministic limit. Under general structure conditions on the Hamiltonian and coupling, we prove existence and uniqueness of the weak solution, characterizing this solution as the minimizer of some optimal control of HamiltonJacobi and continuity equations. We also prove that this solution converges in the long time average to the solution of the associated ergodic problem.
We study a general linear quadratic mean field type control problem and connect it to mean field games of a similar type. The solution is given both in terms of a forward/backward system of stochastic differential equations and by a pair of Riccati equations. In certain cases, the solution to the mean field type control is also the equilibrium strategy for a class of mean field games. We use this fact to study an economic model of production of exhaustible resources.
In this paper, using variational approaches, we investigate the first order planning problem arising in the theory of mean field games. We show the existence and uniqueness of weak solutions of the problem in the case of a large class of Hamiltonians with arbitrary superlinear order of growth at infinity and local coupling functions. We require the initial and final measures to be merely summable. At the same time (relying on the techniques developed recently in [GM18]), under stronger monotonicity and convexity conditions on the data, we obtain Sobolev estimates on the solutions of the planning problem both for space and time derivatives.The data consist of probability measures m 0 , m T ∈ P(T d ), a fixed time horizon T > 0, a coupling function f : T d × [0, +∞) → R and a Hamiltonian H :Our aim is to find conditions on the data for which weak solutions to (1.1) can be shown to exist and are unique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.