SummaryBackgroundPrevious efforts to report estimates of cancer incidence and mortality in India and its different parts include the National Cancer Registry Programme Reports, Sample Registration System cause of death findings, Cancer Incidence in Five Continents Series, and GLOBOCAN. We present a comprehensive picture of the patterns and time trends of the burden of total cancer and specific cancer types in each state of India estimated as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 because such a systematic compilation is not readily available.MethodsWe used all accessible data from multiple sources, including 42 population-based cancer registries and the nationwide Sample Registration System of India, to estimate the incidence of 28 types of cancer in every state of India from 1990 to 2016 and the deaths and disability-adjusted life-years (DALYs) caused by them, as part of GBD 2016. We present incidence, DALYs, and death rates for all cancers together, and the trends of all types of cancers, highlighting the heterogeneity in the burden of specific types of cancers across the states of India. We also present the contribution of major risk factors to cancer DALYs in India.Findings8·3% (95% uncertainty interval [UI] 7·9–8·6) of the total deaths and 5·0% (4·6–5·5) of the total DALYs in India in 2016 were due to cancer, which was double the contribution of cancer in 1990. However, the age-standardised incidence rate of cancer did not change substantially during this period. The age-standardised cancer DALY rate had a 2·6 times variation across the states of India in 2016. The ten cancers responsible for the highest proportion of cancer DALYs in India in 2016 were stomach (9·0% of the total cancer DALYs), breast (8·2%), lung (7·5%), lip and oral cavity (7·2%), pharynx other than nasopharynx (6·8%), colon and rectum (5·8%), leukaemia (5·2%), cervical (5·2%), oesophageal (4·3%), and brain and nervous system (3·5%) cancer. Among these cancers, the age-standardised incidence rate of breast cancer increased significantly by 40·7% (95% UI 7·0–85·6) from 1990 to 2016, whereas it decreased for stomach (39·7%; 34·3–44·0), lip and oral cavity (6·4%; 0·4–18·6), cervical (39·7%; 26·5–57·3), and oesophageal cancer (31·2%; 27·9–34·9), and leukaemia (16·1%; 4·3–24·2). We found substantial inter-state heterogeneity in the age-standardised incidence rate of the different types of cancers in 2016, with a 3·3 times to 11·6 times variation for the four most frequent cancers (lip and oral, breast, lung, and stomach). Tobacco use was the leading risk factor for cancers in India to which the highest proportion (10·9%) of cancer DALYs could be attributed in 2016.InterpretationThe substantial heterogeneity in the state-level incidence rate and health loss trends of the different types of cancer in India over this 26-year period should be taken into account to strengthen infrastructure and human resources for cancer prevention and control at both the national and state levels. These efforts should focu...
The coastal belt of Karunagappally, Kerala, India, is known for high background radiation (HBR) from thorium-containing monazite sand. In coastal panchayats, median outdoor radiation levels are more than 4 mGy y-1 and, in certain locations on the coast, it is as high as 70 mGy y-1. Although HBR has been repeatedly shown to increase the frequency of chromosome aberrations in the circulating lymphocytes of exposed persons, its carcinogenic effect is still unproven. A cohort of all 385,103 residents in Karunagappally was established in the 1990's to evaluate health effects of HBR. Based on radiation level measurements, a radiation subcohort consisting of 173,067 residents was chosen. Cancer incidence in this subcohort aged 30-84 y (N = 69,958) was analyzed. Cumulative radiation dose for each individual was estimated based on outdoor and indoor dosimetry of each household, taking into account sex- and age-specific house occupancy factors. Following 69,958 residents for 10.5 years on average, 736,586 person-years of observation were accumulated and 1,379 cancer cases including 30 cases of leukemia were identified by the end of 2005. Poisson regression analysis of cohort data, stratified by sex, attained age, follow-up interval, socio-demographic factors and bidi smoking, showed no excess cancer risk from exposure to terrestrial gamma radiation. The excess relative risk of cancer excluding leukemia was estimated to be -0.13 Gy-1 (95% CI: -0.58, 0.46). In site-specific analysis, no cancer site was significantly related to cumulative radiation dose. Leukemia was not significantly related to HBR, either. Although the statistical power of the study might not be adequate due to the low dose, our cancer incidence study, together with previously reported cancer mortality studies in the HBR area of Yangjiang, China, suggests it is unlikely that estimates of risk at low doses are substantially greater than currently believed.
This study examined oral cancer in a cohort of 78 140 women aged 30 -84 years in Karunagappally, Kerala, India, on whom baseline information was collected on lifestyle, including tobacco chewing, and sociodemographic factors during the period 1990 -1997. By the end of 2005, 92 oral cancer cases were identified by the Karunagappally Cancer Registry. Poisson regression analysis of grouped data, taking into account age and income, showed that oral cancer incidence was strongly related to daily frequency of tobacco chewing (Po0.001) and was increased 9.2-fold among women chewing tobacco 10 times or more a day. The risk increased with the duration of tobacco chewing during the first 20 years of tobacco chewing. Age at starting tobacco chewing was not significantly related to oral cancer risk. This is the first cohort study of oral cancer in relation to tobacco chewing among women.
The Karunagapally cohort in Kerala, India was established in the 1990s. The present study examined oral cancer risk among 66 277 men aged 30-84 years in the cohort, using Poisson regression analysis of grouped data, stratified on attained age, calendar time, education, and family income. By the end of 2005, 160 oral cancer cases were identified by the Karunagapally Cancer Registry. Tobacco chewing increased oral cancer risk (P < 0.001). Particularly increased was the risk of cancers of the gum and mouth (relative risk [RR] = 4.7; 95% confidence interval [CI] = 2.8-7.9), which increased with higher daily frequencies (P < 0.001) and longer duration (P < 0.001) of tobacco chewing. Alcohol drinking was not significantly related to oral cancer risk regardless of tobacco chewing. Bidi smoking significantly increased oral cancer risk (RR = 2.6; 95%CI = 1.4-4.9) only among men without tobacco chewing habits. The risk increased with higher daily consumption (P < 0.001), longer duration (P = 0.001), and younger age at start of bidi smoking (P = 0.007). In location-specific analysis, bidi smoking was significantly associated with cancer of the gum and mouth (RR = 3.6; 95%CI = 1.1-12.1), and its risk significantly increased with larger daily consumption of bidis (P = 0.013) and younger age at the start of smoking (P = 0.044). Tongue cancer risk was significantly increased among men who smoked bidis for 30 years or longer, and men started bidi smoking at 18 years old or younger. The present study is the first cohort study showing that tobacco chewing increases cancers of the gum and mouth among men keeping chewing tobacco in the cheek, and that bidi smoking strongly increased oral cancer risk among men without a tobacco chewing habit. (Cancer Sci 2011; 102: 460-467)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.