The thermal dependence of the translational diffusion coefficient and of the regional blood volume was investigated in vivo by using a special MR pulsed gradient technique with reduced sensitivity to bulk tissue motion. Measurements were done at 0.5 T, using a small gradient insert. The diffusion coefficient of muscle water was calibrated against thermocouple-measured temperature in vitro, both with the muscle fibers parallel and perpendicular to the diffusion gradient. The maximum muscle temperature variation obtained by percutaneous conduction was -8.8 +/- 1.6 degrees C under cooling and +3.7 +/- 1.6 degrees C under heating, from basal state. Simultaneously the fractional regional blood volume decreased by a factor of 3.5 under cooling and increased by a factor of 2.7 under heating. Due to the interdependence of microcirculation and tissue temperature, this technique may be used to follow heat production or deposition in living tissue (muscle exercise, electromagnetic irradiation, etc.).
In this paper, we review the results of BIOINFOMED, a study funded by the European Commission (EC) with the purpose to analyse the different issues and challenges in the area where Medical Informatics and Bioinformatics meet. Traditionally, Medical Informatics has been focused on the intersection between computer science and clinical medicine, whereas Bioinformatics have been predominantly centered on the intersection between computer science and biological research. Although researchers from both areas have occasionally collaborated, their training, objectives and interests have been quite different. The results of the Human Genome and related projects have attracted the interest of many professionals, and introduced new challenges that will transform biomedical research and health care. A characteristic of the 'post genomic' era will be to correlate essential genotypic information with expressed phenotypic information. In this context, Biomedical Informatics (BMI) has emerged to describe the technology that brings both disciplines (BI and MI) together to support genomic medicine. In recognition of the dynamic nature of BMI, institutions such as the EC have launched several initiatives in support of a research agenda, including the BIOINFOMED study.
Exercise-induced variations in proton signal intensity at magnetic resonance (MR) imaging and in intracellular pH were studied in the forearm muscles of healthy subjects and patients with muscular glycogenoses. The relative increase in T2 was measured from MR images obtained at 0.5 T, and end-exercise pH was measured with surface coil phosphorus-31 spectroscopy at 2 T. Eight healthy subjects showed a relative increase in T2 ranging from 20% to 44% in the flexor digitorum superficialis muscle and a drop in pH ranging from 0.35 to 1.1. Seven patients with muscular glycogenosis (six with McArdle disease and one with phosphofructokinase deficiency) showed only a slight variation in T2 (0%-17%) and no decrease in pH. Variations in T2 and in end-exercise pH were found to be correlated, perhaps reflecting the stimulation of muscular perfusion caused by acidosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.