A numerical model has been developed to study the sensitivity of a pulse combustor's performance to changes in the relative timing between several of the dominant physical processes. The model is used to demonstrate the importance of the characteristic times associated with acoustics, fluid mixing, and chemical kinetics, which have been identified from both theoretical and experimental evidence. The combination of submodels for acoustics, injection, and combustion produces a pulse combustor model that is dynamic in that it fully couples the injection and mixing processes to the acoustic waves. Comparisons of simulations with experimental results show good agreement, verifying the model over a wide range of operating conditions. Because the model provides more control of the dominant processes than can be obtained in experiments, the parametric study establishes the cause-effect relation between the characteristic times and the resulting combustor performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.