Context. The paper is concerned with heating of the solar corona by nanoflares: a superposition of small transient events in which stored magnetic energy is dissipated by magnetic reconnection. It is proposed that heating occurs in the nonlinear phase of an ideal kink instability, where magnetic reconnection leads to relaxation to a state of minimum magnetic energy. Aims. The aim is to investigate the nonlinear aspects of magnetic relaxation on a current loop with zero net axial current. The dynamical processes leading to the establishment of a relaxed state are explored. The efficiency of loop heating is investigated. Methods. A 3D magnetohydrodynamic numerical code is used to simulate the evolution of coronal loops which are initially in ideally unstable equilibrium. The initial states have zero net current. The results are interpreted by comparison both with linear stability analysis and with helicity-conserving relaxation theory. Results. The disturbance due to the unstable mode is strongly radially confined when the loop carries zero net current. Strong current sheets are still formed in the nonlinear phase with dissipation of magnetic energy by fast reconnection. The nonlinear development consists first of reconnection in a large scale current sheet, which forms near the quasi-resonant surface of the equilibrium field. Subsequently, the current sheet extends and then fragments, leading to multiple reconnections and effective relaxation to a constant α field. Conclusions. Magnetic reconnection is triggered in the nonlinear phase of kink instability in loops with zero net current. Initially, reconnection occurs in a single current sheet, which then fragments into multiple reconnection sites, allowing almost full relaxation to the minimum energy state. The loop is heated to high temperatures throughout its volume.
Abstract.A coronal heating model is proposed which predicts heating by a series of discrete events of various energies, analogous to the observed range of events from large scale flares through various transient brightening phenomena down to the often discussed "nanoflares". We suggest that an energy release event occurs when a field becomes linearly unstable to ideal MHD modes, with dissipation during the nonlinear phase of such an instability due to reconnection in fine-scale structures such as current sheets. The energy release during this complex dynamic period can be evaluated by assuming the field relaxes to a minimum energy state subject to the constraint of helicity conservation. A model problem is studied: a cylindrical coronal loop, with a current profile generated by slow twisting of the photospheric footpoints parameterised by two values of α (the ratio of current density to field strength). Different initial α profiles, corresponding to different footpoint twisting profiles, lead to energy release events of a wide range of magnitudes, but our model predicts an observationally realistic minimum size for these events.
Previous work has confirmed the concept of a magnetohydrodynamic (MHD) avalanche in pre-stressed threads within a coronal loop. We undertook a series of full, three-dimensional MHD simulations in order to create three threads by twisting the magnetic field through boundary motions until an instability ensues. We find that, following the original instability, one unstable thread can disrupt its neighbours with continued driving. A “bursty” heating profile results, with a series of ongoing energy releases, but no evident steady state. For the first time using full MHD, we show that avalanches are a viable mechanism for the storing and release of magnetic energy in the solar corona, as a result of photospheric motions.
Magnetic reconnection is a candidate mechanism for particle acceleration in a variety of astrophysical contexts. It is now widely accepted that reconnection plays a key role in solar flares, and reconstructions of coronal magnetic fields indicate that three-dimensional (3D) magnetic null points can be present during flares. We investigate particle acceleration during spine reconnection at a 3D magnetic null point, using a test particle numerical code. We observe efficient particle acceleration and find that two energetic populations are produced: a trapped population of particles that remain in the vicinity of the null, and an escaping population, which leave the configuration in two symmetric jets along field lines near the spine. While the parameters used in our simulation aim to represent solar coronal plasma conditions of relevance for acceleration in flares, the fact that the 3D spine reconnection configuration naturally results in energetic particle jets may be of importance in other astrophysical situations. We also compare the results obtained for the spine reconnection regime with those for the other possible mode of 3D reconnection, fan reconnection. We find that in the latter case energetic particle jets are not produced, though acceleration is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.