Breast Cancer now becomes a common disease among woman in developing as well as developed countries. Many noninvasive methodologies have been used to detect breast cancer. Computer Aided diagnosis through, Mammography is a widely used as a screening tool and is the gold standard for the early detection of breast cancer. The classification of breast masses into the benign and malignant categories is an important problem in the area of computer-aided diagnosis of breast cancer. We present a new method for complete total image of mammogram analysis. A mammogram is analyzed region by region and is classified as normal or abnormal. We present a hybrid technique for extracting features that can be used to distinguish normal and abnormal regions of a mammogram. We describe our classifier technique that uses a unique re-classification method to boost the classification performance. Our proposed hybrid technique comprises decision tree followed by association rule miner shows most proficient and promising performance with high classification rate compared to many other classifiers. We have tested this technique on a set of ground-truth complete total image of mammograms and the result was quite effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.