[1] We present an analytical solution for flow to a partially penetrating well in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from drawdowns recorded in the saturated and/or unsaturated zone. We improve upon a previous such solution due to Tartakovsky and Neuman (2007) by (1) adopting a more flexible representation of unsaturated zone constitutive properties and (2) allowing the unsaturated zone to have finite thickness. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of unsaturated zone constitutive parameters and thickness on drawdowns in the saturated and unsaturated zones as functions of position and time; demonstrate the development of significant horizontal hydraulic gradients in the unsaturated zone in response to pumping; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten-Mualem constitutive model; use our solution to analyze drawdown data from a pumping test conducted by the U.S. Geological Survey at Cape Cod, Massachusetts; and compare our estimates of van Genuchten-Mualem parameters with laboratory values obtained for similar materials in the area.Citation: Mishra, P. K., and S. P. Neuman (2010), Improved forward and inverse analyses of saturated-unsaturated flow toward a well in a compressible unconfined aquifer, Water Resour. Res., 46, W07508,
Mishra and Neuman (2010) developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or unsaturated zones. Their solution accounts for horizontal as well as vertical flows in each zone. It represents unsaturated zone constitutive properties in a manner that is at once mathematically tractable and sufficiently flexible to provide much improved fits to standard constitutive models. In this paper we extend the solution of Mishra and Neuman [2010] to the case of a finite diameter pumping well with storage; investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten [1980]–Mualem [1976] model; use our solution to analyze 11 transducer‐measured drawdown records from a seven‐day pumping test conducted by University of Waterloo researchers at the Canadian Forces Base Borden in Ontario, Canada; validate our parameter estimates against manually‐measured drawdown records in 14 other piezometers at Borden; and compare (a) our estimates of aquifer parameters with those obtained on the basis of all these records by Moench [2008], (b) on the basis of 11 transducer‐measured drawdown records by Endres et al. [2007], (c) our estimates of van Genuchten–Mualem parameters with those obtained on the basis of laboratory drainage data from the site by Akindunni and Gillham [1992], and (d) our corresponding prediction of how effective saturation varies with elevation above the initial water table under static conditions with a profile based on water contents measured in a neutron access tube at a radial distance of about 5 m from the center of the pumping well. We also use our solution to analyze 11 transducer‐measured drawdown records from a 7 day pumping test conducted by University of Waterloo researchers at the Canadian Forces Base Borden in Ontario, Canada. We validate our parameter estimates against manually measured drawdown records in 14 other piezometers at Borden. We compare our estimates of aquifer parameters with those obtained on the basis of all these records by Moench (2008) and on the basis of 11 transducer‐measured drawdown records by Endres et al. (2007), and we compare our estimates of van Genuchten–Mualem parameters with those obtained on the basis of laboratory drainage data from the site by Akindunni and Gillham (1992); finally, we compare our corresponding prediction of how effective saturation varies with elevation above the initial water table under static conditions with a profile based on water contents measured in a neutron access tube at a radial distance of about 5 m from the center of the pumping well.
In a developing country like India, the role of international trade is very significant. And, the relevance of export-led growth hypothesis in India has been the major issue of many empirical studies. But, the other aspect concerning the importance of imports in the economic growth of the country is yet a moot point. This article is an attempt to investigate the dynamics of the relationship between imports and economic growth in India for the period 1970-1971 to 2009-2010. Using time series techniques such as vector error correction estimates and Granger causality tests, we show the existence of a two-way relationship between import growth and income growth in the long run.
Analytical solutions for constant-rate pumping tests are widely used to infer aquifer properties. In this note, we implement a methodology that approximates the time-varying pumping record as a series of segments with linearly varying pumping rates. We validate our approach using an analytical solution for a sinusoidally varying pumping test. We also apply our methodology to analyze synthetic test data and compare the results with those from a commonly used method where rate variations are represented by a series of constant-rate steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.