In the presence of neuromodulators such as serotonin and noradrenaline, motoneurons exhibit persistent inward currents (PICs) that serve to amplify synaptic inputs. A major component of these PICs is mediated by L-type Ca(2+) channels. Estimates based on electrophysiological studies indicate that these channels are located on the dendrites, but immunohistochemical studies of their precise distribution have yielded different results. Our goal was to determine the distribution of these channels using computational methods. A theoretical analysis of the activation of PICs by a somatic current injection in the absence or presence of synaptic activity suggests that L-type Ca(2+) channels may be segregated to discrete hot spots 25-200 microm long and centered 100-400 microm from the soma in the dendritic tree. Compartmental models based on detailed anatomical measurements of the structure of feline neck motoneurons with L-type Ca(2+) channels incorporated in these regions produced plateau potentials resulting from PIC activation. Furthermore, we replicated the experimental observation that the somatic threshold at which PICs were activated was depolarized by tonic activation of inhibitory synapses and hyperpolarized by tonic activation of excitatory synapses. Models with L-type Ca(2+) channels distributed uniformly were unable to replicate the change in somatic threshold of PIC activation. Therefore we conclude that the set of L-type Ca(2+) channels mediating plateau potentials is restricted to discrete regions in the dendritic tree. Furthermore, this distribution leads to the compartmentalization of the dendritic tree of motoneurons into subunits whose sequential activation lead to the graded amplification of synaptic inputs.
It is well established that long, descending axons of the adult mammalian spinal cord do not regenerate after a spinal cord injury (SCI). These axons do not regenerate because they do not mount an adequate regenerative response and growth is inhibited at the injury site by growth cone collapsing molecules, such as chondroitin sulfate proteoglycans (CSPGs). However, whether axons of axotomized spinal interneurons regenerate through the inhibitory environment of an SCI site remains unknown. Here, we show that cut axons from adult mammalian spinal interneurons can regenerate through an SCI site and form new synaptic connections in vivo. Using morphological and immunohistochemical analyses, we found that after a midsagittal transection of the adult feline spinal cord, axons of propriospinal commissural interneurons can grow across the lesion despite a close proximity of their growth cones to CSPGs. Furthermore, using immunohistochemical and electrophysiological analyses, we found that the regenerated axons conduct action potentials and form functional synaptic connections with motoneurons, thus providing new circuits that cross the transected commissures. Our results show that interneurons of the adult mammalian spinal cord are capable of spontaneous regeneration after injury and suggest that elucidating the mechanisms that allow these axons to regenerate may lead to useful new therapeutic strategies for restoring function after injury to the adult CNS.
The geometry of the somata and dendritic trees of motoneurons innervating neck and shoulder muscles was investigated by using intracellular injections of HRP. In general, these motoneurons did not belong to a homogeneous population of motoneurons. Differences in average primary dendritic diameter, number of primary dendrites, and other measures of dendritic tree size were found between different neck and shoulder motoneuron groups. Several indices of proximal dendritic tree size (number of primary dendrites, sum of dendritic diameters, Rall's dendritic trunk parameter, and the sum of dendritic holes) were weakly correlated with the diameter or surface area of the soma. Some of these correlations depended on the muscle supplied by the motoneuron. The total combined dendritic length ranged from 66,660 to 95,390 microns. There was a weak, but positive, correlation between the diameter of primary dendrites and combined dendritic length. This relationship varied from motoneuron to motoneuron. The diameters of all dendrites of three trapezius motoneurons were examined in detail. The total dendritic surface area examined ranged from 415,000 to 488,100 microns 2 and represented approximately 99% of the total neuronal surface area. Last-order dendrites showed a high degree (39.9%) of taper. Dendritic tapering, by itself, was a major factor in the decrease of the (sum of dendritic diameters)3/2 measured at progressively distal sites from the soma. Although few parent and daughter dendrites obeyed the "three-halves law," the average exponent was 1.57. The diameters of primary dendrites and dendritic surface area were weakly correlated. The correlation between dendritic diameter and combined dendritic length or surface area improved if the weighted average of the diameter of second-order dendrites was used as a measure of dendrite size. Second-order dendrites, whose branches terminated in different regions of the spinal cord, showed different relationships between dendritic diameter and combined dendritic length or surface area. Comparisons between the motoneurons examined in the present study and motoneurons innervating other muscles indicate that, although all spinal motoneurons share several common features (e.g., long dendrites, dendritic tapering), each motoneuron group has a set of unique features (e.g., soma shape, relationship between primary dendrite diameter and dendritic surface area). Thus, the rules governing motoneuron dendritic geometry are not fixed but depend on the species of the motoneuron.
The distinctive features of axons and dendrites divide most neurons into two compartments. This polarity is fundamental to the ability of most neurons to integrate synaptic signals and transmit action potentials. It is not known, however, if the polarity of neurons in the adult mammalian nervous system is fixed or plastic. Following axotomy, some distal dendrites of neck motoneurons in the adult cat give rise to unusual processes that, at a light microscopic level, resemble axons (Rose, P.K. & Odlozinski, M., J. Comp. Neurol., 1998, 390, 392). The goal of the present experiments was to characterize these unusual processes using well-established ultrastructural and molecular criteria that differentiate dendrites and axons. These processes were immunoreactive for growth-associated protein-43 (GAP-43), a protein that is normally confined to axons. In contrast, immunoreactivity for a protein that is widely used as a marker for dendrites, microtubule-associated protein (MAP)-2a/b, could not be detected in the unusual distal arborizations. At the electron microscopic level, unusual distal processes contained dense collections of neurofilaments and were frequently myelinated. These molecular and structural characteristics are typical of axons and suggest that the polarity of adult neurons in the mammalian nervous system can be disrupted by axotomy. If this transformation in neuronal polarity is common to other types of neurons, axon-like processes emerging from distal dendrites may represent a mechanism for replacing connections lost due to injury. Alternatively, the connections formed by these axons may be aberrant and therefore maladaptive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.