We propose a continuum theory of orientational phase transitions induced by an external magnetic field in a suspension of carbon nanotubes in a nematic liquid crystal. It is shown that in a magnetic field a non-uniform and two different uniform phases are possible in the suspension. The uniform phases of the suspension differ by the type of orientational coupling of nanotubes with the liquid crystal matrix (the planar type when the nanotubes are oriented along the matrix director, and the homeotropic type when the nanotubes are perpendicular to the director). The possibility of a redistribution of the nanotube concentration (segregation effect) is shown. The fields of orientational transitions between uniform and non-uniform phases of the suspension are found analytically. It is shown that, when the nanotubes are weakly coupled to the matrix, the magnetic field induces reentrant transitions (uniform planar phase–non-uniform phase–uniform homeotropic phase–non-uniform phase). These transitions can be of first or of second order depending on the carbon nanotubes segregation intensity.
We study the orientational transitions in a suspension of carbon nanotubes in a nematic liquid crystal induced by an external magnetic field. The case of a finite orientational anchoring of liquid crystal molecules at the surface of doped carbon nanotubes is considered. It is shown that in a magnetic field the initial homogeneous planar texture of the liquid crystal–carbon nanotubes mixture is disturbed in a threshold manner (Fréedericksz transition). The orientational and concentration distributions of the suspension are studied for different values of the magnetic field strength and segregation intensity of the impurity subsystem. The optical phase lag between ordinary and extraordinary rays of light transmitted through a layer of a liquid crystal composite is calculated. The possibility of changing the nature of the Fréedericksz transition from second order to first order is shown. This tricritical behavior is related to the redistribution of the carbon nanotubes (segregation effect) inside the layer.
A molecular-statistical theory of colloidal suspension of spherical ferromagnetic particles in a nematic liquid crystal matrix is considered. A tensor expression of the suspension Hamiltonian is proposed, which contains contributions that make it possible to describe the ferromagnetic state of the studied system. Within the mean-field approximation, a system of equations is obtained that describes various orientational states of the suspension. Phase diagrams of the suspension are plotted. It is shown that depending on temperature and intensity of particles interaction with the liquid crystal matrix, the suspension can be in an ordered state with different magnetic properties, namely, in the ferromagnetic and superparamagnetic nematic phases, in addition to the isotropic phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.