The objective of this paper is to model determinants of intraurban variation in ambient concentrations of nitrogen dioxide (NO2) in Toronto, Canada, with a land use regression (LUR) model. Although researchers have conducted similar studies in Europe, this work represents the first attempt in a North American setting to characterize variation in traffic pollution through the LUR method. NO2 samples were collected over 2 wk using duplicate two-sided Ogawa passive diffusion samplers at 95 locations across Toronto. Independent variables employed in subsequent regression models as predictors of NO2 were derived by the Arc 8 geographic information system (GIS). Some 85 indicators of land use, traffic, population density, and physical geography were tested. The final regression model yielded a coefficient of determination (R2) of .69. For the traffic variables, density of 24-h traffic counts and road measures display positive associations. For the land use variables, industrial land use and counts of dwellings within 2000 m of the monitoring location were positively associated with NO2. Locations up to 1500 m downwind of major expressways had elevated NO2 levels. The results suggest that a good predictive surface can be derived for North American cities with the LUR method. The predictive maps from the LUR appear to capture small-area variation in NO2 concentrations. These small-area variations in traffic pollution are probably important to the exposure experience of the population and may detect health effects that would have gone unnoticed with other exposure estimates.
BackgroundChronic exposure to traffic-related air pollution (TRAP) may contribute to premature mortality, but few studies to date have addressed this topic.ObjectivesIn this study we assessed the association between TRAP and mortality in Toronto, Ontario, Canada.MethodsWe collected nitrogen dioxide samples over two seasons using duplicate two-sided Ogawa passive diffusion samplers at 143 locations across Toronto. We calibrated land use regressions to predict NO2 exposure on a fine scale within Toronto. We used interpolations to predict levels of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) and ozone levels. We assigned predicted pollution exposures to 2,360 subjects from a respiratory clinic, and abstracted health data on these subjects from medical billings, lung function tests, and diagnoses by pulmonologists. We tracked mortality between 1992 and 2002. We used standard and multilevel Cox proportional hazard models to test associations between air pollution and mortality.ResultsAfter controlling for age, sex, lung function, obesity, smoking, and neighborhood deprivation, we observed a 17% increase in all-cause mortality and a 40% increase in circulatory mortality from an exposure contrast across the interquartile range of 4 ppb NO2. We observed no significant associations with other pollutants.ConclusionsExposure to TRAP was significantly associated with increased all-cause and circulatory mortality in this cohort. A high prevalence of cardiopulmonary disease in the cohort probably limits inference of the findings to populations with a substantial proportion of susceptible individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.