This paper is concerned with the elastic buckling of stiffened cylindrical shells by rings and stringers made of functionally graded materials subjected to axial compression loading. The shell properties are assumed to vary continuously through the thickness direction. Fundamental relations, the equilibrium and stability equations are derived using the Sander's assumption. Resulting equations are employed to obtain the closed-form solution for the critical buckling loads. The results show that the inhomogeneity parameter and geometry of shell significantly affect the critical buckling loads. The analytical results are compared and validated using the finite element method.
In this research, mechanical buckling of rectangular plates of functionally graded materials (FGMs) is considered. Equilibrium and stability equations of an FGM rectangular plate under uniform in-plane compression are derived. For isotropic materials, convergent buckling loads have been presented for non-uniformly compressed rectangular plates based on a rigorous superposition Fourier solution for the in-plane Airy stress field and Galerkin's approach for stability analysis. Results for isotropic cases are compared with reference articles and finite-element method solution. Finally, the results are achieved for a sample of FGM as well as the research on the effect of power law index on buckling loads.
The stability problem of a circular cylindrical shell composed of functionally graded materials with elasticity modulus varying continuously in the thickness direction under combined external pressure and axial compression loads is studied in this paper. The formulation is based on the first-order shear deformation theory. A load interaction parameter is defined to express the combination of applied axial compression and external pressure. The stability equations are derived by the adjacent equilibrium criterion method. These equations are employed to analyze the buckling behavior and obtain the critical buckling loads. A detailed numerical study is carried out to bring out the effects of the power law index of functionally graded material, load interaction parameter, thickness ratio, and aspect ratio on the critical buckling loads. The validity of the present analysis was checked by comparing the present results with those results available in literature.
The analytical solutions of the first-order shear deformation theory are developed to study the buckling behaviour of functionally graded (FG) cylindrical shells under three types of mechanical loads. The Poisson's ratios of the FG cylindrical shells are assumed to be constant, while the Young's moduli vary continuously throughout the thickness direction according to the volume fraction of constituents given by power-law or exponential function. The stability equations are employed to obtain the closed-form solutions for critical buckling loads of each loading case. The dependence of the critical buckling loads on the variations of the material properties with a power-law or exponential function is studied. It is observed that these effects change appreciably the critical buckling loads. Results for critical loads are tabulated for thin and moderately thick shells. Although the critical buckling load of FG cylindrical shells decreases as the circumferential wave numbers increase, it rises for axially compressed long shells as the longitudinal wave numbers increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.