In this paper, we address the problem of recovering a hyperspectral texture descriptor. We do this by viewing the wavelength-indexed bands corresponding to the texture in the image as those arising from a stochastic process whose statistics can be captured making use of the relationships between moment generating functions and Fourier kernels. In this manner, we can interpret the probability distribution of the hyper-spectral texture as a heavy-tailed one which can be rendered invariant to affine geometric transformations on the texture plane making use of the spectral power of its Fourier cosine transform. We do this by recovering the affine geometric distortion matrices corresponding to the probability density function for the texture under study. This treatment permits the development of a robust descriptor which has a high information compaction property and can capture the space and wavelength correlation for the spectra in the hyperspectral images. We illustrate the utility of our descriptor for purposes of recognition and provide results on real-world datasets. We also compare our results to those yielded by a number of alternatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.