To understand the foraging strategy of honeybee colonies, we measured certain temporal and spatial patterns in the foraging activities of a colony living in a temperate deciduous forest. We monitored foraging activities by housing the colony in an observation hive and reading its recruitment dances to map its food source patches. We found that the colony routinely foraged several kilometres from its nest (median 1.7 km, 95% of foraging within 6.0 km), frequently (at least daily) adjusted its distribution of foragers on its patches, and worked relatively few patches each day (mean of 9.7 patches accounted for 90% of each day's forage). These foraging patterns, together with prior studies on the mechanisms of honeybee recruitment communication, indicate that the foraging strategy of a honeybee colony involves surveying the food source patches within a vast area around its nest, pooling the reconnaissance of its many foragers, and using this information to focus its forager force on a few high—quality patches within its foraging area.
Honeybee swarms and complex brains show many parallels in how they make decisions. In both, separate populations of units (bees or neurons) integrate noisy evidence for alternatives, and, when one population exceeds a threshold, the alternative it represents is chosen. We show that a key feature of a brain--cross inhibition between the evidence-accumulating populations--also exists in a swarm as it chooses its nesting site. Nest-site scouts send inhibitory stop signals to other scouts producing waggle dances, causing them to cease dancing, and each scout targets scouts' reporting sites other than her own. An analytic model shows that cross inhibition between populations of scout bees increases the reliability of swarm decision-making by solving the problem of deadlock over equal sites.
Israeli acute paralysis virus (IAPV) is a widespread RNA virus of honey bees that has been linked with colony losses. Here we describe the transmission, prevalence, and genetic traits of this virus, along with host transcriptional responses to infections. Further, we present RNAi-based strategies for limiting an important mechanism used by IAPV to subvert host defenses. Our study shows that IAPV is established as a persistent infection in honey bee populations, likely enabled by both horizontal and vertical transmission pathways. The phenotypic differences in pathology among different strains of IAPV found globally may be due to high levels of standing genetic variation. Microarray profiles of host responses to IAPV infection revealed that mitochondrial function is the most significantly affected biological process, suggesting that viral infection causes significant disturbance in energy-related host processes. The expression of genes involved in immune pathways in adult bees indicates that IAPV infection triggers active immune responses. The evidence that silencing an IAPV-encoded putative suppressor of RNAi reduces IAPV replication suggests a functional assignment for a particular genomic region of IAPV and closely related viruses from the Family Dicistroviridae, and indicates a novel therapeutic strategy for limiting multiple honey bee viruses simultaneously and reducing colony losses due to viral diseases. We believe that the knowledge and insights gained from this study will provide a new platform for continuing studies of the IAPV–host interactions and have positive implications for disease management that will lead to mitigation of escalating honey bee colony losses worldwide.
The honeybee dance language, in which foragers perform dances containing information about the distance and direction to food sources, is the quintessential example of symbolic communication in non-primates. The dance language has been the subject of controversy, and of extensive research into the mechanisms of acquiring, decoding and evaluating the information in the dance. The dance language has been hypothesized, but not shown, to increase colony food collection. Here we show that colonies with disoriented dances (lacking direction information) recruit less effectively to syrup feeders than do colonies with oriented dances. For colonies foraging at natural sources, the direction information sometimes increases food collected, but at other times it makes no difference. The food-location information in the dance is presumably important when food sources are hard to find, variable in richness and ephemeral. Recruitment based simply on arousal of foragers and communication of floral odour, as occurs in honeybees, bumble bees and some stingless bees, can be equally effective under other circumstances. Clarifying the condition-dependent payoffs of the dance language provides new insight into its function in honeybee ecology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.