Cytokeratin expression was studied in human middle ear cholesteatoma lesions, using a variety of immunohistological techniques and a wide range of polyclonal antisera and monoclonal antibodies against cytokeratin (CK) subgroups or individual CK polypeptides. The expression of the other cytoskeletal proteins, vimentin and desmin, was also investigated. Middle ear mucosa and epidermal tissues were used as reference tissues. Our investigations also included epithelial structures present in the cholesteatoma perimatrix and in dermal tissues. The results indicate that, compared with epidermal tissues, the expression profile of CKs in cholesteatoma matrix is representative of a hyperproliferative disease. Evaluating the presence of a marker of terminal keratinization - the 56.5 kD acidic CK n degrees 10 - we found supportive evidence of a pronounced retardation of its expression, which did not parallel histological differentiation. In epidermal tissues, the first prickle cell layers are CK10 positive whereas in many cholesteatomas this finding was observed near the stratum granulosum only. Probing the early stages of keratinization - the 58 kD basic CK n degrees 5 and the 50 kD acidic CK n degrees 14 - we regularly observed an extended staining area in the cholesteatoma matrix. In epidermal reference tissues, only the basal and nearest suprabasal layers were convincingly labeled. As a rule, non-epidermal CKs did not belong to the cholesteatoma CK set. However, exceptions to that rule were noticed as a focal or more extended expression of one or more non-epidermal CKs in about half of the cases. Together with the extended CK5 topography, this is further evidence that CK expression is seriously affected by the diseased state. CK expression in the perimatrix is limited to mucous glands, either normal, atrophic or hyperplastic. CKs n degrees 4, 5, 7, 14, 18 and 19, also displayed by middle ear mucosa, were consistently observed. Where ductal arrangements were present, CK10 was also detected, in analogy with the CK10 registration in ductal portions of mucous glands in the external ear canal skin. The absence of CK8 in mucous glands of the perimatrix, however, strongly differentiates these structures from the mucous gland acini and ducti in the external ear canal, where CK8 is systematically expressed. Vimentin staining was restricted to dendritic cells of the matrix (Langerhans cells) and to perimatrix fibroblasts, blood cells and vascular endothelium. Coexpression of CK and vimentin was not observed.
A quantitative histochemical study was carried out on the distribution of protein thiol and disulphide groups in normal human plantar epidermal tissue. Histochemical demonstration of reactive groups was achieved by addition of N-(4-aminophenyl) maleimide, subsequent diazotization and final coupling with a Nitro Red or chromotropic acid label as first described by Sippel. The quantitative reliability of the method was tested by absorption cytophotometry, and evaluated on the basis of the internal consistency of the results reported. Our histological observations and histophotometric data support accepted views on epidermal keratinization. A limited, though reproducible, amount of disulphide bonds was observed near the basement membrane. The free thiol concentration in basal and prickle cells was low and almost constant, but was higher in the granular cells, where deposition of sulphur-containing proteins on cell membranes is initiated. In Malpighian layers, disulphide cross-links only occurred just beneath the transition zone in thickened cell membranes. The staining pattern of the inner stratum corneum resembled a mosaic and was characterized by a Sharp rise of the disulphide content, which exceeded the decrease in free thiol groups. The free thiol concentration decreased further throughout the cornified layers whilst the disulphide content remained fairly constant. Staining of thiol and disulphide groups together corresponded, within the limits of the standard error, to the sum of the thiol and disulphide concentrations when they were assayed separately in living ahd horny cells. These results confirm that living cells are the main site of free thiol groups, while horny cells are the most prominent of site of disulphide cross-links.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.