Yoghurt from cow's milk artificially contaminated with aflatoxin M1 (AFM1) at levels of 0.050 and 0.100 g l(-1) was fermented to reach pHs 4.0 and 4.6. Yoghurt fermented to pH 4.6 was also used for preparing strained yoghurt. Yoghurts were stored at 4 degrees C for up to 4 weeks. Analysis of AFM1 in milk, yoghurt, strained yoghurt and yoghurt whey was carried out using immunoaffinity column extraction and liquid chromatography coupled with fluorometric detection. AFM1 levels in yoghurt samples showed a significant decrease (p < 0.01) compared with those initially added to milk. Growth of culture lactic acid bacteria was not affected in the AFM1 contaminated yoghurts, with the exception of Streptococcus thermophilus that showed a significantly (p < 0.01) lower increase in the yoghurt containing the toxin at high concentration. Following fermentation, AFM1 was significantly lower (p < 0.01) in yoghurts with pH 4.0 than in yoghurts with pH 4.6 at both contamination levels. During refrigerated storage, AFM1 was rather more stable in yoghurts with pH 4.6 than with pH 4.0. The percentage loss of the initial amount of AFM1 in milk was estimated at about 13 and 22% by the end of the fermentation, and 16 and 34% by the end of storage for yoghurts with pHs 4.6 and 4.0, respectively. The percentage distribution ratio of AFM1 in strained yoghurt/yoghurt whey of the initial toxin present in the yoghurt was about 90/10 and 87/13 for the lower and the higher contamination levels, respectively.
This study was conducted to determine the prevalence and antimicrobial resistance of Listeria monocytogenes recovered from chicken carcasses in slaughterhouses in Northern Greece. A total of 100 poultry samples (300 carcasses) were examined for Listeria spp. The samples were neck skin taken from four different slaughterhouses in Northern Greece. Forty samples were also taken from the environment of the slaughterhouses. Identification of L. monocytogenes was carried out by PCR and fingerprinting of the isolates by random amplified polymorphic DNA. L. monocytogenes strains isolated from chicken carcasses and from the environment of the slaughterhouses were also examined for antibiotic resistance. Fifty-five isolates of L. monocytogenes were tested for susceptibility to 20 antibiotics using the disk diffusion method. Listeria spp. were present in 99 of the poultry samples tested (99%), and 38 yielded L monocytogenes (38%). L. monocytogenes was also isolated in 80% of samples from the environment of a certain slaughterhouse, while the other slaughterhouses were found to be contaminated only with Listeria spp. All isolates were resistant to nalidixic acid and oxolinic acid, the majority of them to clindamycin, and only a few to tetracycline and oxytetracycline, whereas they were found to be susceptible to all other antimicrobials. The results of this study demonstrate a high prevalence of L. monocytogenes contamination in chicken carcasses, and all isolates were found to be sensitive to the antimicrobials most commonly used to treat human listeriosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.