This paper presents a systematic approach to develop the mathematical model for predicting the ultimate tensile strength, yield strength, and percentage of elongation of AA6351 aluminum alloy which is widely used in automotive, aircraft and defense Industries by incorporating (FSW) friction stir welding process parameter such as tool rotational speed, welding speed, and axial force. FSW has been carried out based on three factors five level central composite rotatable design with full replications technique. Response surface methodology (RSM) is employed to develop the mathematical model. Analysis of variance (ANOVA) Technique is used to check the adequacy of the developed mathematical model. The developed mathematical model can be used effectively at 95% confidence level. The effect of FSW process parameter on mechanical properties of AA6351 aluminum alloy has been analyzed in detail.
Abstract. This paper compares, the mechanical properties of welded joints 6061 T6 and 5083 O aluminium alloys obtained using friction stir welding (FSW) at four rotation speeds namely 450,560,710 and 900 rpm and that by conventional fusion welding. FSW welds were carried out on a milling machine. The performance of FSW and Fusion welded joints were identified using tensile test, hardness test and microstructure. The properties of FSW and fusion welded processes were also compared with each other to understand the advantages and disadvantages of these processes for welding applications for Al alloys. It was seen that the tensile strength obtained with FSW was higher as compared to conventional fusion welding process. The width of the heat affected zone of FSW was narrower than Fusion welded joints. The results showed that FSW improved the mechanical properties of welded joints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.