Abstract. The scientific investigation of the nature of shock waves started 130 years ago with the advent of the schlieren method which was developed in the period 1859-1864 by August Toepler. At the very beginning applied to the visualization of heat and flow phenomena, he immediately turned to air shock waves generated by electric sparks, and subjectively studied the propagation, reflection and refraction of shock waves. His new delay circuit in the microsecond time regime for the first time made it possible to vary electrically the delay time between a spark generating a shock wave and a second spark acting as a flash light source in his schlieren setup. In 1870 Toepler, together with Boltzmann, applied Jamin's interferometric refractometer and extended the visualization to very weak sound waves at the threshold of hearing. Toepler's pioneering schlieren method stimulated Ernst Mach and his team to objectively investigate the nature of shock waves: they improved Toepler's time delay circuit; continued the study on the reflection of shock waves; introduced shadowgraphy as a modification of the schlieren method; photographed the propagation of shock waves generated by an electric spark and by supersonic projectiles, and improved interferometry. Based on a large number of original documents the paper illuminates the concomitant circumstances of the invention of the schlieren method and its first applications by others.
The interaction of 20-nsec 300-MW pulses of 1.06-μm laser radiation with thick aluminum targets in vacuum has been studied. The time history of the target impulse has been measured with a Sandia quartz gauge. A time sequence of plasma density maps constructed from floating double-probe data has been used with measured expansion velocities to estimate the plasma momentum. The results show that the stress wave is predominantly produced by about 10% of the evaporated target material which is ionized and expands from the surface in the form of a hot plasma during and shortly after the laser pulse. The estimated momentum of the plasma and neutral emitted particles is 5.6 g cm/sec for a typical case compared with the measured target impulse of 6.1 g cm/sec.
This paper examines the historical background leading to the discovery of the Mach reflection effect and applies original documents from Mach's residue which are kept in the archives of the Ernst-Mach-Institut in Freiburg. Two experimental setups for the generation and demonstration of the Mach reflection effect, incorporating an overhead projector, are described: (a) Mach's historic mechanical shock wave reflection and interaction experiments with soot covered glass plates, performed in 1875. The Mach triple points sharply erase the soot which results in a residual picture of funnel-shaped V-formations. The head-on collision of two shock waves is marked as a narrow line of piled-up soot. (b) CalTech's hydraulic jump reflection experiments in a shallow ripple tank, performed during World War II. Regular reflection and its transition into a Mach reflection wave. Using a slightly inclined tank and providing a "shoreline" in the middle of the tank, Mach stem propagation slows down to zero when hitting the shore line and, therefore, can be observed "live" without the use of a slow motion technique
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.