Dietary fibers are at the forefront of nutritional research because they positively contribute to human health. Much of our processed foods contain, however, only small quantities of dietary fiber, because their addition often negatively affects the taste, texture, and mouth feel. There is thus an urge for novel types of dietary fibers that do not cause unwanted sensory effects when applied as ingredient, while still positively contributing to the health of consumers. Here, we report the generation and characterization of a novel type of soluble dietary fiber with prebiotic properties, derived from starch via enzymatic modification, yielding isomalto/malto-polysaccharides (IMMPs), which consist of linear (α1 → 6)-glucan chains attached to the nonreducing ends of starch fragments. The applied Lactobacillus reuteri 121 GTFB 4,6-α-glucanotransferase enzyme synthesizes these molecules by transferring the nonreducing glucose moiety of an (α1 → 4)-glucan chain to the nonreducing end of another (α1 → 4)-α-glucan chain, forming an (α1 → 6)-glycosidic linkage. Once elongated in this way, the molecule becomes a better acceptor substrate and is then further elongated with (α1 → 6)-linked glucose residues in a linear way. Comparison of 30 starches, maltodextrins, and α-glucans of various botanical sources, demonstrated that substrates with long and linear (α1 → 4)-glucan chains deliver products with the highest percentage of (α1 → 6) linkages, up to 92%. In vitro experiments, serving as model of the digestive power of the gastrointestinal tract, revealed that the IMMPs, or more precisely the IMMP fraction rich in (α1 → 6) linkages, will largely pass the small intestine undigested and therefore end up in the large intestine. IMMPs are a novel type of dietary fiber that may have health promoting activity.
ScopeThis study characterize intestinal fermentation of isomalto/malto‐polysaccharides (IMMPs), by monitoring degradation of IMMPs, production of short chain fatty acids (SCFAs), lactic acid, and succinic acid as well as enzyme activity and microbiota composition.Methods and resultsIMMP‐94 (94% α‐(1→6) glycosidic linkages), IMMP‐96, IMMP‐27, and IMMP‐dig27 (IMMP‐27 after removal of digestible starch segments) are fermented batchwise in vitro using human fecal inoculum. Fermentation digesta samples are taken for analysis in time up till 48 h. The fermentation of α‐(1→6) glycosidic linkages in IMMP‐94, IMMP‐96, and IMMP‐dig27 starts after 12 h and finishes within 48 h. IMMP‐27 fermentation starts directly after inoculation utilizing α‐(1→4) linked glucosyl residues; however, the utilization of α‐(1→6) linked glucoses is delayed and start only after the depletion of α‐(1→4) linked glucose moieties. SCFAs are produced in high amounts with acetic acid and succinic acid being the major products next to propionic acid and butyric acid. The polysaccharide fraction is degraded into isomalto‐oligosaccharides (IMOs) mainly by extracellular enzymes. The smaller IMOs are further degraded by cell‐associated enzymes. Overall microbial diversity and the relative abundance of Bifidobacterium and Lactobacillus, significantly increase during the fermentation of IMMPs.ConclusionIMMP containing segments of α‐(1→6) linked glucose units are slowly fermentable fibers with prebiotic potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.