We demonstrate the compression of 95 keV, space-charge-dominated electron bunches to sub-100 fs durations. These bunches have sufficient charge (200 fC) and are of sufficient quality to capture a diffraction pattern with a single shot, which we demonstrate by a diffraction experiment on a polycrystalline gold foil. Compression is realized by means of velocity bunching by inverting the positive space-charge-induced velocity chirp. This inversion is induced by the oscillatory longitudinal electric field of a 3 GHz radio-frequency cavity. The arrival time jitter is measured to be 80 fs.
We demonstrate a method to measure synchronization between femtosecond laser pulses and the electric field inside a resonant 3 GHz radio frequency (RF) cavity. The method utilizes the Pockels effect in a crystal inside the RF cavity by measuring the retardation of the components of polarization as a function of RF phase. Resolution of the setup used is shown to be 29 ± 2 fs (root-mean-square, rms), with timing jitter between the laser pulses and the RF field inside the cavity of 96 ± 7 fs (rms). The method provides a tool to reduce jitter and improve time-resolution in ultrafast electron diffraction experiments.
The femtosecond photoemission yield from a copper cathode and the emittance of the created electron beams has been studied in a 12 MeV=m, 100 keV dc electron gun over a wide range of laser fluence, from the linear photoemission regime until the onset of image charge limitations and cathode damaging. The measured photoemission curves can be described well with available theory which includes the Schottky effect, second-order photoemission, and image charge limitation. The second-order photoemission can be explained by thermally assisted one-photon photoemission (1PPE) and by above-threshold two-photon photoemission (2PPE). Measurements with a fresh cathode suggest that the 2PPE process is dominant. The beam emittance has been measured for the entire range of initial surface charge densities as well. The emittance measurements of space-charge dominated beams can be described well by an envelope equation with generalized perveance. The dc gun produces 0.1 pC bunches with 25 nm rms normalized emittance, corresponding to a normalized brightness usually associated with rf photoguns. In this experimental study the limits of femtosecond photoemission from a copper cathode have been explored and analyzed in great detail, resulting in improved understanding of the underlying mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.