Dipole–dipole interaction between molecules of hydrogen-bonding polar liquids (HBPLs), which has a collective and long-range nature, determines the basic large-scale properties of such liquids. We present a two-scale phenomenological vector model of polar liquids (VMPLs), wherein the liquid is described by a polarization vector. The simplest version of this model satisfactorily reproduces the well-known properties of HBPLs and interaction between macroscopic objects in a liquid. The possible existence of a ferroelectric phase transition (FPT) in supercooled liquid water is discussed. Near the FPT, fluctuations of the polarization vector increase, which may be the cause of the so-called ‘anomalous’ properties of water. We propose a quantitative classification of body surfaces based on the properties of their wettability by polar liquids. The ordering of dipoles of molecules located in the near-surface layers of HBPLs and phase transitions in these layers are discussed. The proposed model enables a significant reduction in computer time in numerical simulations of systems that contain a large number of water molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.