Abstract3D fabric preforms are used as reinforcements in composite applications. 3D woven preforms have a huge demand in ballistic applications, aircraft industry, automobiles and structural reinforcements. A variety of 3D woven fabric reinforced composites and two dimensional woven fabric reinforced laminates can be found in the literature. However, the majority of the said products lack in delamination resistance and possess poor out-of-plane mechanical characteristics, due to the absence or insufficiency of through-thickness reinforcement. 3D fully interlaced preform weaving introduces a method of producing fully interlaced 3D woven fabric structures with through-thickness reinforcement, which enhances the delamination resistance as well as out-of-plane mechanical characteristics. 3D woven fabric preforms made from 3D fully interlaced preform weaving, using high-performance fiber yarns such as Dyneema, Carbon, Kevlar and Zylon, have exceptional mechanical properties with light-weight characteristics, which make them suitable candidates for high-end technical composite applications. In this work, a brief introduction is given to the history of weaving followed by an introduction to 3D woven fabrics. In the existing literature, an emphasis is given to the 3D fully interlaced preform weaving process, distinguishing it from other 3D woven fabric manufacturing methods. Subsequently, a comprehensive review is made on the existing literature on 3D fully interlaced preform weaving devices, such as primary and secondary mechanisms as well as modelling of 3D woven fabric structures produced by 3D fully interlaced preform weaving. Finally, the authors attempted to discuss the existing research gaps with potential directions for future research.
Ballistic resistance enhancement of armours and structures has been a prominent area of research over the years. Monolithic metallic plates have been the preferred choice for armours against high-velocity projectiles. High-strength steel is a popular choice for such systems. However, the high areal density deters in accommodating such systems in practical applications which require lightweight products. On the contrary, multi-metallic systems produced by the combination of low-density materials with similar or superior ballistic resistance as their monolithic counterparts have become attractive candidates in defence applications. However, only a limited number of comprehensive studies on the ballistic performance of multi-metal multi-layered targets are available in the literature. Moreover, these studies have drawn contradictory conclusions on the optimum arrangement of different layers and materials within the systems. In addition, existing knowledge in this area is scattered in the literature and there is a need to collate them to enhance the development of multi-metal multi-layered ballistic-resistant plate systems in order to be optimised for ballistic-related armour. This article aims to provide a comprehensive review of the effect of different metals, thickness, fracture mechanisms, feasibility of the connection types and the order of the metallic plates within targets on the ballistic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.