SynopsisDirect difference ir spectra are presented as a function of hydration for lysozyme and u-lactalbumin, and detailed sequential hydration molecular events identified. Despite the strong sequence homology between the two proteins, and their expected conformational similarity, the hydration behavior of the polar groups is different for the two proteins. Using a Hill-type analysis, we conclude that the acid groups ionize and hydrate rapidly and noncooperatively in both proteins, consistent with the known (lysozyme) and postulated (a-lactalbumin) surface chemistry. The polar group hydration shows a clear cooperativity, which is quantitatively different in the two proteins. Complementary work suggests this cooperativity relates to a hydration-induced "loosening up" of the lysozyme conformation a t about 55 mol water/mol protein. u-Lactalbumin appears to "open up" more easily for hydration than does lysozyme, consistent with its lower stability against thermal and acid denaturation.
SynopsisUsing direct difference ir and laser Raman spectroscopy, the sequential hydration of hen egg-white lysozyme was monitored. The ir data allowed us to identify some specific molecular hydration events that occur as water is added, whereas the Raman is interpreted in terms of conformational changes. The largest of these solvent-induced changes occurs below the hydration level a t which activity commences.
The activity, stability and spectroscopic properties of yeast K+ -activated aldehyde dehydrogenase were measured at various times after removal from, and after returning to a solution containing K+. Enzyme activity is rapidly lost on removal of most of the K+ and rapidly regained if K+ is replaced immediately. These activity changes are slower than likely rates of K+ dissociation and association. These rapid changes in concentration result in altered enzyme stability with enzyme in K+ the more stable. U.v. difference spectra are produced whenever enzyme in an activating environment (K+ or Tl+) is compared with enzyme in a non-activating environment (Tris+ or Li+). These spectral changes occur within 10s. The saturation characteristics with K+ are hyperbolic for all three phenomena of activation, stabilization and spectral change, with estimated apparent dissociation constants (Ks) for K+ of 7.5 mM, 5.5 mM and 6 mM respectively. Continued incubation of enzyme in the absence of K+ results in the accumulation of an enzyme form that re-activates only slowly on replacing K+. Stability characteristics in various concentrations of K+ over equivalent time scales are consistent with the existence of additional conformations. Spectroscopic evidence also indicates such additional slow conformation changes. Results have been interpreted in terms of two separate conformation transitions induced or stabilized by K+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.