Global concentration of CO 2 in the atmosphere is increasing rapidly. CO 2 emissions have an impact on global climate change. Effective CO 2 emission abatement strategies such as Carbon Capture and Storage (CCS) are required to combat this trend. There are three major approaches for CCS: Post-combustion capture, Pre-combustion capture and Oxyfuel process. Post-combustion capture offers some advantages as existing combustion technologies can still be used without radical changes on them. This makes postcombustion capture easier to implement as a retrofit option (to existing power plants) compared to the other two approaches. Therefore, post-combustion capture is probably the first technology that will be deployed. This paper aims to provide a state-of-the-art assessment of the research work carried out so far in post-combustion capture with chemical absorption. The technology will be introduced first, followed by required preparation of flue gas from power plants to use this technology. The important research programmes worldwide and the experimental studies based on pilot plants will be reviewed. This is followed by an overview of various studies based on modelling and simulation. Key issues such as energy consumption and plant flexibility will be included. Then the focus is turned to review development of different solvents and process intensification. Based on these, we try to predict challenges and potential new developments from different aspects such as new solvents, pilot plants, process heat integration (to improve efficiency), modelling and simulation, process intensification and government policy impact.
Post-combustion capture by chemical absorption using MEA solvent remains one of the most popular technologies for CO 2 emission mitigation for coal-fired power plants. This paper presents a study of the dynamic responses of a post-combustion CO 2 capture plant by modelling and simulation. Such a plant consists mainly of the absorber (where CO 2 is chemically absorbed) and the regenerator (where the chemical solvent is regenerated). Model development and validation are described followed by dynamic analysis of the absorber and regenerator columns linked together with recycle. The gPROMS (Process Systems Enterprise Ltd.) advanced process modelling environment has been used to implement the proposed work. The study gives insights into the operation of the absorber-regenerator combination with possible disturbances arising from integrated operation with a power generation plant. It is shown that the performance of the absorber is more sensitive to the molar L/G ratio than the actual flow rates of the liquid solvent and flue gas. In addition, the importance of appropriate water balance in the absorber column is shown. A step change of the reboiler duty indicates a slow response. A case involving the combination of two fundamental CO 2 capture technologies (the partial oxyfuel mode in the furnace and the postcombustion solvent scrubbing) is studied. The flue gas composition was altered to mimic that observed with the combination. There was an initial sharp decrease in CO 2 absorption level which may not be observed in steady state simulations.
Power generation from fossil fuel-fired power plants is the largest single source of CO 2 emissions. Post combustion capture via chemical absorption is viewed as the most mature CO 2 capture technique. This paper presents a study of the postcombustion CO 2 capture with monoethanolamine (MEA) based on dynamic modelling of the process. The aims of the project were to compare two different approaches (the equilibrium-based approach versus the rate-based approach) in modelling the absorber dynamically and to understand the dynamic behaviour of the absorber during part load operation and with disturbances from the stripper. A powerful modelling and simulation tool gPROMS was chosen to implement the proposed work. The study indicates that the rate-based model gives a better prediction of the chemical absorption process than the equilibrium-based model. The dynamic simulation of the absorber indicates normal absorber column operation could be maintained during part load operation by maintaining the ratio of the flow rates of the lean solvent and flue gas to the absorber. Disturbances in the CO 2 loading of the lean solvent to the absorber significantly affect absorber performance. Further work will extend the dynamic modelling to the stripper for whole plant analyses.
a b s t r a c tThis study aims to provide insights into the design and operation of full-scale post-combustion CO 2 capture for a 500 MWe sub-critical power plant through dynamic modelling and simulation. The development and validation of the dynamic models of the power plant and CO 2 capture plant are described. In addition, the scale-up of the CO 2 capture plant from pilot plant scale (where it was validated) to full scale is discussed. Subsequently the manner in which the two plant models were linked is discussed. A floating IP/LP crossover pressure configuration is used. A throttling valve is included between the LP turbine and draw-off point to prevent pressures at the crossover from dropping below required levels in the reboiler for solvent regeneration. The flue gas from the power plant is treated before it is sent to the CO 2 capture plant. Four case studies are considered. The first investigates the effect of increasing solvent concentration on the performance of the power plant with the capture plant. The second investigates which absorber packing height offers a good balance between capital and operating costs. The two dynamic case studies show that the CO 2 capture plant has a slower response than the power plant. They also reveal an interaction of CO 2 capture level and power plant output control loops making it difficult to achieve steady power output levels quickly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.