The Isaac Newton Telescope (INT) Photometric Hα Survey of the Northern Galactic Plane (IPHAS) is a 1800‐deg2 CCD survey of the northern Milky Way spanning the latitude range −5° < b < + 5° and reaching down to r′≃ 20 (10σ). Representative observations and an assessment of point‐source data from IPHAS, now underway, are presented. The data obtained are Wide Field Camera images in the Hα narrow‐band, and Sloan r′ and i′ broad‐band filters. We simulate IPHAS (r′−Hα, r′−i′) point‐source colours using a spectrophotometric library of stellar spectra and available filter transmission profiles: this defines the expected colour properties of (i) solar metallicity stars, without Hα emission, and (ii) emission‐line stars. Comparisons with observations of fields in Aquila show that the simulations of normal star colours reproduce the observations well for all spectral types earlier than M. A further comparison between colours synthesized from long‐slit flux‐calibrated spectra and IPHAS photometry for six objects in a Taurus field confirms the reliability of the pipeline calibration. Spectroscopic follow‐up of a field in Cepheus shows that sources lying above the main stellar locus in the (r′− Hα, r′−i′) plane are confirmed to be emission‐line objects with very few failures. In this same field, examples of Hα deficit objects (a white dwarf and a carbon star) are shown to be readily distinguished by their IPHAS colours. The role IPHAS can play in studies of spatially resolved northern Galactic nebulae is discussed briefly and illustrated by a continuum‐subtracted mosaic image of Shajn 147 (a supernova remnant, 3° in diameter). The final catalogue of IPHAS point sources will contain photometry on about 80 million objects. Used on its own, or in combination with near‐infrared photometric catalogues, IPHAS is a major resource for the study of stellar populations making up the disc of the Milky Way. The eventual yield of new northern emission‐line objects from IPHAS is likely to be an order of magnitude increase on the number already known.
Context. We present spectroscopic observations of a sample of 72 emission-line objects, including mainly H ii regions, in the spiral galaxy M 33. Spectra were obtained with the multi-object, wide field spectrograph AF2/WYFFOS at the 4.2 m WHT telescope. Line intensities, extinction, and electron density were determined for the whole sample of objects.Aims. The aim of the present work was to derive chemical and physical parameters of a set of H ii regions, and from them the metallicity gradient. Results. The presence of abundance gradients was inferred from the radial behaviour of several emission-line ratios, and accurately measured from chemical abundances directly derived in 14 H ii regions. The oxygen abundances of our H ii regions, located in the radial region from ∼2 to ∼7.2 kpc, gave an oxygen gradient −0.054 ± 0.011 dex kpcConclusions. The overall oxygen gradient for M 33 obtained using ours and previous oxygen determinations in a large number of H ii regions with direct electron temperature determination as well as abundance in young stars presented a two slope shape: −0.19 dex kpc −1 for the central regions (R < 3 kpc), and −0.038 dex kpc −1 for the outer regions (R ≥ 3 kpc).
Context. We present the second part of an optical spectroscopic study of planetary nebulae in the LMC and SMC. The first paper, Leisy & Dennefeld (1996, A&AS, 116, 96), discussed the CNO cycle for those objects where C abundances were available. Aims. In this paper we concentrate more on other elemental abundances (such as O, Ne, S, Ar) and their implications for the evolution of the progenitor stars. Methods. We use a much larger sample of 183 objects, of which 65 are our own observations, where the abundances have been re-derived in a homogeneous way. For 156 of them, the quality of data is considered to be satisfactory for further analysis. Results. We confirm the difficulty of separating type I and non-type-I objects in the classical He-N/O diagram, as found in Paper I, a problem reinforced by the variety of initial compositions for the progenitor stars. We observed oxygen variations, either depletion via the ON cycle in the more massive progenitor stars, or oxygen production in other objects. Neon production also appears to be present. These enrichments seem to be explained best by recent models, some including overshooting, where fresh material from the core or from burning shells is brought to the surface by the 3rd dredge-up. All the effects appear stronger in the SMC, suggesting a higher efficiency in a low metallicity environment, either because the reaction itself is more efficient or because the increment is more visible when superposed on a low initial quantity. Conclusions. Neither oxygen nor neon can therefore be used to derive the initial composition of the progenitor star: other elements not affected by processing such as sulfur, argon or, if observed, chlorine, have to be preferred for this purpose. Some objects with very low initial abundances are detected, but on average, the spatial distribution of PNe abundances is consistent with the history of star formation (SF) as derived from field stars in both Clouds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.